참고문헌
- Alkhatib, R. and Golnaraghi, M.F. (2003), "Active structural vibration control: a review", Shock Vib. Digest, 35(5), 367-383. https://doi.org/10.1177/05831024030355002
- Allik, H. and Hughes, T.J.R. (1970), "Finite element method for piezoelectric vibration", Int. J. Num. Meth. Eng., 2(2), 151-157. https://doi.org/10.1002/nme.1620020202
- Benjeddou, A. (2000), "Advances in piezoelectric finite element modeling of adaptive structural elements: a survey", Comput. Struct., 76, 347-363. https://doi.org/10.1016/S0045-7949(99)00151-0
- Benjeddou, A. (2004), Modeling and simulation of adaptive structures and composites: current trends and future directions, Progress in computational structures technology, (Eds. Topping, B.H.V. and Soares, C.A.M.), Saxe Coburg Publications.
- Blanguernon, A., Lene, F. and Bernadou, M. (1999), "Active control of a beam using a piezoceramic element", Smart Mater. Struct., 8(1), 116-124. https://doi.org/10.1088/0964-1726/8/1/013
- Bruant, I., Coffignal, G., Lené, F. and Vergé, M. (2001), "Active control of beam structures with piezoelectric actuators and sensors: modeling and simulation", Smart Mater. Struct., 10(2), 404-408. https://doi.org/10.1088/0964-1726/10/2/402
- Burl, J.B. (1999), Linear optimal control, Addison-Wesley, California.
- Chandrashekhara, K. and Smyser, C.P. (1998), "Dynamic modeling and neural control of composite shells using piezoelectric devices", J. Intel. Mat. Syst. Str., 9(1), 29-43. https://doi.org/10.1177/1045389X9800900103
- Crawley, E.F. and de Luis, J. (1987), "Use of piezoelectric actuators as element of intelligent structures", AIAA J., 25, 1373-1385. https://doi.org/10.2514/3.9792
- Fukunaga, H., Hu, N. and Ren, G.X. (2001), "FEM modeling of adaptive composite structures using a reduced higher-order plate theory via penalty functions", Int. J. Solids Struct., 38, 8735-8752. https://doi.org/10.1016/S0020-7683(01)00072-5
- Heyliger, P., Ramirez, G. and Saravanos, D. (1994), "Coupled discrete-layer finite elements for laminated piezoelectric plates", Commun. Numer. Meth. En., 10(12), 971-981. https://doi.org/10.1002/cnm.1640101203
- Irschik, H. (2002), "A review on static and dynamic shape control of structures by piezoelectric actuation", Eng. Struct., 24, 5-11. https://doi.org/10.1016/S0141-0296(01)00081-5
- Kwakernaak, H. and Sivan, R. (1972), Linear optimal control systems, New York, John Whiley and Sons.
- Lage, R.G., Soares, C.M.M., Soares, C.A.M. and Reddy, J.N. (2004a), "Analysis of laminated adaptive plate structures by mixed layerwise finite element models", Compos. Struct., 66, 269-276. https://doi.org/10.1016/j.compstruct.2004.04.048
- Lage, R.G., Soares, C.M.M., Soares, C.A.M. and Reddy, J.N. (2004b), "Modeling of piezolaminated plates using layerwise mixed finite element models", Comput. Struct., 82(23-26), 1849-1863. https://doi.org/10.1016/j.compstruc.2004.03.068
- Lim, Y.H., Varadan, V.V. and Varadan, V.K. (1997), "Closed loop finite element modeling of active structural damping in the frequency domain", Smart Mater. Struct., 6(2), 161-168. https://doi.org/10.1088/0964-1726/6/2/005
- Moita, J.M.S., Correia, I.F.P., Soares, C.M.M. and Soares, C.A.M. (2004), "Active control of adaptive laminated structures with bonded piezoelectric sensors and actuators", Comput. Struct., 82(17-19), 1349-1358. https://doi.org/10.1016/j.compstruc.2004.03.030
- Narayanan, S. and Balamurugan, V. (2003), "Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators", J. Sound Vib., 262, 529-562. https://doi.org/10.1016/S0022-460X(03)00110-X
- Oshima, K., Takigami, T. and Hayakawa, Y. (1997), "Robust vibration control of a cantilever beam using selfsensing actuator", JSME Int. J. C-Mech. Sy., 40, 681-687. https://doi.org/10.1299/jsmec.40.681
- Petyt, M. (1990), Introduction to finite element vibration analysis, Cambridge University Press, Cambridge.
- Qiu, J. and Tani, J. (1995), "Vibration control of a cylindrical shell using distributed piezoelectric sensors and actuators", J. Intel. Mat. Syst. Str., 6(4), 474-481. https://doi.org/10.1177/1045389X9500600404
- Saravanos, D.A., Heyliger, P.R. and Hopkins, D.A. (1997), "Layerwise mechanics and finite element model for the dynamic analysis of piezoelectric composite plates", Int. J. Solids Struct., 34(3), 359-378. https://doi.org/10.1016/S0020-7683(96)00012-1
- Sunar, M. and Rao, S.S. (1999), "Recent advances in sensing and control of flexible structures via piezoelectric material technology", Appl. Mech. Rev., 52, 1-16. https://doi.org/10.1115/1.3098923
- Sung, C.K., Chen, T.F. and Chen, S.G. (1996), "Piezoelectric modal sensor actuator design for monitoring generating flexural and torsional vibrations of cylindrical shells", J. Vib. Acoust., 118, 48-55. https://doi.org/10.1115/1.2889634
- Tzou, H.S. and Gadre, M. (1989), "Theoretical-analysis of a multi-layered thin shell coupled with piezoelectric shell actuators for distributed vibration controls", J. Sound Vib., 132, 433-450. https://doi.org/10.1016/0022-460X(89)90637-8
- Vasques, C.M.A. and Rodrigues, J.D. (2006), "Active vibration control of smart piezoelectric beams: Comparison of classical and optimal feedback control strategies", Comput. Struct., 84(22-23), 1402-1414. https://doi.org/10.1016/j.compstruc.2006.01.026
- Veley, D.E. and Rao, S.S. (1996), "A comparison of active, passive and hybrid damping in structural design", Smart Mater. Struct., 5(5), 660-671. https://doi.org/10.1088/0964-1726/5/5/014
- Vidal, P. and Polit, O. (2008), "A family of sinus finite elements for the analysis of rectangular laminated beams", Compos. Struct., 84, 56-72. https://doi.org/10.1016/j.compstruct.2007.06.009
- Wang, B.T. and Rogers, C.A. (1991), "Laminate plate-theory for spatially distributed induced strain actuators", J. Compos. Mater., 25, 433-452. https://doi.org/10.1177/002199839102500405
- Xu, K.M., Noor, A.K. and Tang, Y.Y. (1995), "3-dimensional solutions for coupled thermoelectroelastic response of multilayered plates", Comput. Method. Appl. M., 126(3-4), 355-371. https://doi.org/10.1016/0045-7825(95)00825-L
피인용 문헌
- Efficient coupled refined finite element for dynamic analysis of sandwich beams containing embedded shear-mode piezoelectric layers vol.23, pp.3, 2016, https://doi.org/10.1080/15376494.2014.981617
- Assessment of FGPM shunt damping for vibration reduction of laminated composite beams vol.389, 2017, https://doi.org/10.1016/j.jsv.2016.11.023
- A finite element model based on coupled refined high-order global-local theory for static analysis of electromechanical embedded shear-mode piezoelectric sandwich composite beams with various widths vol.72, 2013, https://doi.org/10.1016/j.tws.2013.06.001
- Effective coupled thermo-electro-mechanical properties of piezoelectric structural fiber composites: A micromechanical approach 2017, https://doi.org/10.1177/1045389X17711787
- A coupled refined high-order global-local theory and finite element model for static electromechanical response of smart multilayered/sandwich beams vol.82, pp.12, 2012, https://doi.org/10.1007/s00419-012-0621-9
- An efficient finite element model for static and dynamic analyses of functionally graded piezoelectric beams vol.104, 2013, https://doi.org/10.1016/j.compstruct.2013.04.010
- Passive shape control of force-induced harmonic lateral vibrations for laminated piezoelastic Bernoulli-Euler beams-theory and practical relevance vol.7, pp.5, 2010, https://doi.org/10.12989/sss.2011.7.5.417
- Coupled refined layerwise theory for dynamic free and forced response of piezoelectric laminated composite and sandwich beams vol.48, pp.6, 2013, https://doi.org/10.1007/s11012-012-9679-2
- Reduced modal state-space approach for low-velocity impact analysis of sandwich beams vol.206, pp.None, 2018, https://doi.org/10.1016/j.compstruct.2018.08.081
- H∞ control method for seismically excited building structures with time-delay vol.26, pp.11, 2020, https://doi.org/10.1177/1077546319890010
- Smart damping of a simply supported laminated CNT-based hybrid composite plate using FE approach vol.171, pp.None, 2022, https://doi.org/10.1016/j.tws.2021.108782