References
- Akle, B.J., Bennett, M.D. and Leo, D.J. (2006), "High-strain ionomeric ionic liquid electroactive actuators", Sensor. Actuat. A-Phys., 126(1), 173-181. https://doi.org/10.1016/j.sna.2005.09.006
- Arora, J.S. (2004), Introduction to optimum design, 2nd Edition, Elsevier Academic Press, San Diego, California, USA.
- Azuma, A., Azuma, S., Watanabe, I. and Furuta, T. (1985), "Flight mechanics of a dragonfly", J. Exp. Biol., 116(1), 79-107.
- Bar-Cohen, Y. (Editor) (2004), Electroactive Polymer (EAP) actuators as artificial muscles - Reality, potential, and challenges, 2nd Edition, SPIE Press, Bellingham, Washington, USA.
- Betteridge, D.S. and Archer, R.D. (1974), "A study of the mechanics of flapping wings", Aeronaut. Q., 25, 129-142. https://doi.org/10.1017/S0001925900006892
- Bohorquez, F., Samuel, P., Sirohi, J., Pines, D., Rudd, L. and Perel, R. (2003), "Design, analysis and hover performance of a rotary wing micro air vehicle", J. Am. Helicopter Soc., 48(2), 80-90. https://doi.org/10.4050/JAHS.48.80
- Buechler, M.A. and Leo, D.J. (2007), "Characterization and variational modeling of ionic polymer transducers", J. Vib. Acoust., 129(1), 113-120. https://doi.org/10.1115/1.2424973
- Carrion, J.E. and Spencer, Jr. B.F. (2008), "Real-time hybrid testing using model-based delay compensation", Smart Struct. Syst., 4(6), 809-828. https://doi.org/10.12989/sss.2008.4.6.809
- Casciati, F. and van der Eijk, C. (2008), "Variability in mechanical properties and microstructure characterization of CuAlBe shape memory alloys for vibration mitigation", Smart Struct. Syst., 4(2), 103-121. https://doi.org/10.12989/sss.2008.4.2.103
- Combes, S.A. and Daniel, T.L. (2003), "Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending", J. Exp. Biol., 206(17), 2989-2997. https://doi.org/10.1242/jeb.00524
- Cosyn, P. and Vierendeels, J. (2007), "Design of fixed wing micro air vehicles", Aeronaut. J., 111(1119), 315-326. https://doi.org/10.1017/S0001924000004565
- Cox, A., Monopoli, D., Cveticanin, D., Goldfarb, M. and Garcia, E. (2002), "The development of elastodynamic components for piezoelectrically actuated flapping micro-air vehicles", J. Intel. Mat. Syst. Str., 13(9), 611-615. https://doi.org/10.1106/104538902032463
- DeLaurier, J.D. (1993), "An aerodynamic model for flapping-wing flight", Aeronaut. J., 97(964), 125-130.
- Deng, X., Schenato, L., Wu, W.C. and Sastry, S.S. (2006), "Flapping flight for biomimetic robotic insects: Part I - System modeling", IEEE T. Robot., 22(4), 776-788. https://doi.org/10.1109/TRO.2006.875480
- Dudley, R. (2000), The biomechanics of insect flight - Form, function and evolution, Princeton University Press, Princeton, New Jersey.
- Grasmeyer, J.M. and Keennon, M.T. (2001), Development of the black widow micro air vehicle, Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications (Ed. T.J. Mueller), Progress in Astronautics and Aeronautics Series, AIAA, Reston, VA, USA.
- Hein, B.R. and Chopra, I. (2007), "Hover performance of a micro air vehicle: Rotors at low Reynolds number", J. Am. Helicopter Soc., 52(3), 254-262. https://doi.org/10.4050/JAHS.52.254
- Ke, S., Zhigang, W. and Chao, Y. (2008), "Analysis and flexible structural modeling for oscillating wing utilizing aeroelasticity", Chin. J. Aeronaut., 21(5), 402-410. https://doi.org/10.1016/S1000-9361(08)60052-7
- Kim, S.M. and Kim, K.J. (2008), "Palladium buffer-layered high performance Ionic Polymer-Metal Composites", Smart Mater. Struct., 17(6), 1363-1368.
- Kim, J.M. and Koratkar, N. (2005), "Effect of unsteady blade pitching motion on aerodynamic performance of microrotorcraft", J. Aircraft, 42(4), 874-881. https://doi.org/10.2514/1.6732
- Liu, S.C. (2008), "Sensors, smart structures technology and steel structures", Smart Struct. Syst., 4(5), 517-530. https://doi.org/10.12989/sss.2008.4.5.517
- Lee, S., Park, H.C. and Kim, K.J. (2005), "Equivalent modeling for Ionic Polymer-Metal Composite actuators based on beam theories", Smart Mater. Struct., 14(6), 1363-1368. https://doi.org/10.1088/0964-1726/14/6/028
- Lee, S.G., Park, H.C. and Pandia, S.D. (2006), "Performance improvement of IPMC (Ionic Polymer Metal Composites) for a flapping actuator", Int. J. Control Autom. Syst., 4(6), 748-755.
- Manna, M.C., Sheikh, A.H. and Bhattacharyya, R. (2009), "Static analysis of rubber components with piezoelectric patches using nonlinear finite element", Smart Struct. Syst., 5(1), 23-42. https://doi.org/10.12989/sss.2009.5.1.023
- McIntosh, S.H., Agrawal, S.K. and Khan, Z. (2006), "Design of a mechanism for biaxial rotation of a wing for a hovering vehicle", IEEE-ASME T. Mech., 11(2), 145-153. https://doi.org/10.1109/TMECH.2006.871089
- Nelson, J. and Koratkar, N. (2005), "Effect of miniaturized gurney flaps on aerodynamic performance of microscale rotors", J. Aircraft, 42(2), 557-561. https://doi.org/10.2514/1.9473
- Okamoto, M. and Azuma, A. (2005), "Experimental study on aerodynamic characteristics of unsteady wings at low Reynolds number", AIAA J., 43(12), 2526-2536. https://doi.org/10.2514/1.14813
- Park, H.C., Lee, S.K. and Kim, K.J. (2005a), "Equivalent modeling for shape design of IPMC (Ionic Polymer Metal Composite) as flapping actuator", Key Eng. Mater., 297-300, 616-621. https://doi.org/10.4028/www.scientific.net/KEM.297-300.616
- Park, S., Yun, C.B., Roh, Y. and Lee, J.J. (2005b), "Health monitoring of steel structures using impedance of thickness modes at PZT patches", Smart Struct. Syst., 1(4), 339-353. https://doi.org/10.12989/sss.2005.1.4.339
- Pines, D.J. and Bohorquez, F. (2006), "Challenges facing future micro-air-vehicle development", J. Aircraft, 43(2), 290-305. https://doi.org/10.2514/1.4922
- Ramasamy, M. and Leishman, J.G. (2006), "Phase-locked particle image velocimetry measurements of a flapping wing", J. Aircraft, 43(6), 1867-1875. https://doi.org/10.2514/1.21347
- Shahinpoor, M., Bar-Cohen, Y., Simpson, J.O. and Smith, J. (1998), "Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - a review", Smart Mater. Struct., 7(6), R15-R30. https://doi.org/10.1088/0964-1726/7/6/001
- Shyy, W., Berg, M. and Ljungqvist, D. (1999), "Flapping and flexible wings for biological and micro air vehicles", Prog. Aerosp. Sci., 35(5), 455-505. https://doi.org/10.1016/S0376-0421(98)00016-5
- Singh, B. and Chopra, I. (2008), "Insect-based hover-capable flapping wings for micro air vehicles: Experiments and analysis", AIAA J., 46(9), 2115-2135. https://doi.org/10.2514/1.28192
- Sirohi, J., Parsons, E. and Chopra, I. (2007), "Hover performance of a cycloidal rotor for a micro air vehicle", J. Am. Helicopter Soc., 52(3), 263-279. https://doi.org/10.4050/JAHS.52.263
-
Tanaka, K., Oonuki, M., Moritake, N. and Uchiki, H. (2009), "
$Cu_2ZnSnS_4$ thin film solar cells prepared by non-vacuum processing", Sol. Energ. Mat. Sol. C., 93(5), 583-587. https://doi.org/10.1016/j.solmat.2008.12.009 - Tarascio, M.J., Ramasamy, M., Chopra, I. and Leishman, J.G. (2005), "Flow visualization of micro air vehicle scaled insect-based flapping wings", J. Aircraft, 42(2), 385-390. https://doi.org/10.2514/1.6055
- Tiwari, R., Kim, K.J. and Kim, S.M. (2008), "Ionic polymer-metal composite as energy harvesters", Smart Struct. Syst., 4(5), 549-563. https://doi.org/10.12989/sss.2008.4.5.549
- Wakeling, J.M. and Ellington, C.P. (1997), "Dragonfly flight. I. Gliding flight and steady-state aerodynamic forces", J. Exp. Biol., 200(3), 543-556.
- Wang, Z.J. (2000), "Vortex shedding and frequency selection in flapping flight", J. Fluid Mech., 410, 323-341. https://doi.org/10.1017/S0022112099008071
- Willmott, A.P. and Ellington, C.P. (1997), "The mechanics of flight in the hawkmoth Manduca sexta I. Kinematics of hovering and forward flight", J. Exp. Biol., 200(21), 2705-2722.
- Wu, J.H. and Sun, M. (2004), "Unsteady aerodynamic forces of a flapping wing", J. Exp. Biol., 207(23), 1137-1150. https://doi.org/10.1242/jeb.00868
- Yamamoto, M. and Isogai, K. (2005), "Measurement of unsteady fluid dynamics forces for a mechanical dragonfly model", AIAA J., 43(12), 2475-2480. https://doi.org/10.2514/1.15899
- Ying, Z.G., Ni, Y.Q. and Ko, J.M. (2009), "A semi-active stochastic optimal control strategy for nonlinear structural systems with MR dampers", Smart Struct. Syst., 5(1), 69-79. https://doi.org/10.12989/sss.2009.5.1.069
- Zeng, L., Matsumoto, H. and Kawachi, K. (1996), "A fringe shadow method for measuring flapping angle and torsional angle of a dragonfly wing", Meas. Sci. Technol., 7(5), 776-781. https://doi.org/10.1088/0957-0233/7/5/009
Cited by
- Elucidating Multiscale Periosteal Mechanobiology: A Key to Unlocking the Smart Properties and Regenerative Capacity of the Periosteum? vol.19, pp.2, 2013, https://doi.org/10.1089/ten.teb.2012.0216
- A Review of Biomimetic Air Vehicle Research: 1984-2014 vol.7, pp.3, 2015, https://doi.org/10.1260/1756-8293.7.3.375
- A comparative study of the effects of constructional elements on the mechanical behaviour of dragonfly wings vol.122, pp.1, 2016, https://doi.org/10.1007/s00339-015-9557-6
- Nanomaterial-based ionic polymer metal composite insect scale flapping wing actuators vol.23, pp.11, 2016, https://doi.org/10.1080/15376494.2015.1068409
- Smart body armor inspired by flow in bone vol.7, pp.3, 2011, https://doi.org/10.12989/sss.2011.7.3.223
- Structural modeling of actuation of IPMC in dry environment: effect of water content and activity vol.19, pp.5, 2010, https://doi.org/10.12989/sss.2017.19.5.553
- Dynamic modeling and control of IPMC hydrodynamic propulsor vol.20, pp.4, 2010, https://doi.org/10.12989/sss.2017.20.4.499