참고문헌
- ATMACS (2008), Consulting for the measurement systems for integrated entrusted management of long-span bridges (The 1st and 2nd Jindo Bridges) (in Korean), Sungnam, Gyunggi-do, Korea.
- Brincker, R. Zhang, L. and Andersen, P. (2001), "Modal identification of output-only systems using frequency domain decomposition" Smart Mater. Struct., 10, 441-445. https://doi.org/10.1088/0964-1726/10/3/303
- Caetano, E., Cunha, A., Gattulli, V. and Lepidi, M. (2008), "Cable-deck dynamic interactions at the International Guadiana Bridge: On-site measurements and finite element modeling", Struct. Control Health Monit., 15(3), 237-264. https://doi.org/10.1002/stc.241
- Cho, S., Lynch, J.P., Lee, J.J. and Yun, C.B. (2010), "Development of an automated wireless tension force estimation system for cable-stayed bridge", J. Intel. Mat. Syst. Str., 21(3), 361-376. https://doi.org/10.1177/1045389X09350719
- Ernst, J.H. (1965), "Der E-modul von seilen unter berucksienhtigung des durchanges (in German), Der Bauingenieur, 40(2), 52-55.
- Fujino, Y., Siringoringo, D.M. and Abe M. (2009), "The needs for advanced sensor technologies in risk assessment of civil infrastructures", Smart Struct. Syst., 5(2), 173-191. https://doi.org/10.12989/sss.2009.5.2.173
- Irvine, M. (1981), Cable structures, Dover Publications, Inc., New York, USA.
- Jain, A., Jones, N.P. and Scanlan, R.H. (1998), "Effect of modal damping on bridge aeroelasticity", J. Wind Eng. Ind. Aerod., 77(8), 421-430.
- Jang, S., Jo, H., Cho, S., Mechitov, K., Rice, J.A., Sim, S.H., Jung, H.J., Yun, C.B., Spencer, Jr., B.F. and Agha, G. (2010), "Structural health monitoring of a cable stayed bridge using smart sensor technology: deployment and evaluation", Smart Struct. Syst., 6(5-6), 439-459. https://doi.org/10.12989/sss.2010.6.5_6.439
- Jeong, M.J. and Koh, B.H. (2009), "A decentralized approach to damage localization through smart wireless sensors," Smart Struct. Syst., 5(1), 43-54. https://doi.org/10.12989/sss.2009.5.1.043
- Koo, K.Y., Lee, J.J., Yun, C.B. and Kim, J.T. (2008), "Damage detection in beam-like structures using deflections obtained by modal flexibility matrices", Smart Struct. Syst., 4(5), 605-628. https://doi.org/10.12989/sss.2008.4.5.605
- Koshimura, K., Tatsumi, M. and Hata, K. (1994), "Vibration control of the main towers of the Akashi Kaikyo Bridge", Proceedings of the 1st World Conference on Structural Control, Los Angeles, California, USA.
- Li, H., Liu, M., Li, J.H., Guan, X.C. and Ou, J.P. (2007), "Vibration control of stay cables of the Shandong Binzhou yellow drive highway bridge using magnetorehaological fluid dampers", J. Bridge Eng., 12(4), 401-409. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:4(401)
- MidasIT (2009), http://www.midasit.com.
- Overschee, P.V. and De Moor, B. (1993), "Subspace algorithms for the stochastic identification problem", Automatics, 29(3), 649-660. https://doi.org/10.1016/0005-1098(93)90061-W
- Pakzad, S.N., Fenves, G.L., Kim. S. and Culler, D.E. (2008), "Design and implementation of scalable wireless sensor network for structural monitoring", J. Infrastruct. Syst., 14(1), 89-101. https://doi.org/10.1061/(ASCE)1076-0342(2008)14:1(89)
- Park, Y.S., Choi, S.M., Yang, W.Y., Hong, H.J. and Kim, W.H. (2008), "A study on tension for cables of a cablestayed bridge damper is attached (in Korean)", J. Korean Soc. Steel Constr., 20(5), 609-616.
- Peeters, B. and De Roeck, G. (1999), "Reference-based stochastic subspace identification for output-only modal analysis", Mech. Syst. Signal Pr., 13(6), 855-878. https://doi.org/10.1006/mssp.1999.1249
- Pinto da Costa, A., Martins, J.A.C., Branco, F. and Lilien, J.L. (1996), "Oscillations of bridge stay cables induced by periodic motions of deck and/or towers", J. Eng. Mech.-ASCE, 122(7), 613-622. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:7(613)
- Rice, J.A., Mechitov, K., Sim, S.H., Nagayama, T., Jang, S., Kim, R., Spencer, Jr., B.F., Agha, G. and Fujino, Y. (2010), "Flexible smart sensor framework for autonomous structural health monitoring", Smart Struct. Syst., 6(5-6), 423-438. https://doi.org/10.12989/sss.2010.6.5_6.423
- Sim, S.H., Carbonell-Marquez, J.F. and Spencer, Jr., B.F. (2010), "Efficient decentralized data aggregation in wireless smart sensor networks," Proceedings of the SPIE conference on Sensors and Smart Structures Technologies for Civil, Mechanical and Aerospace Systems, San Diego, CA, USA.
- Weng, J.H., Loh, C.H., Lynch, J.P., Lu, K.C., Lin, P.Y. and Wang, Y. (2008), "Output-only modal identification of a cable-stayed bridge using wireless monitoring systems", Eng. Struct., 30(7), 1820-1830. https://doi.org/10.1016/j.engstruct.2007.12.002
- Yi, J.H. and Yun, C.B. (2004), "Comparative study on modal identification methods using output-only information", Struct. Eng. Mech., 17(3-4), 445-466. https://doi.org/10.12989/sem.2004.17.3_4.445
- Yun, J. (2001), Finite element model updating for cable-stayed bridge using ambient vibration (in Korean), Ph.D. Thesis, Seoul National University, Seoul, Korea.
피인용 문헌
- Smart sensing, monitoring, and damage detection for civil infrastructures vol.15, pp.1, 2011, https://doi.org/10.1007/s12205-011-0001-y
- Operation of battery-less and wireless sensor using magnetic resonance based wireless power transfer through concrete vol.17, pp.4, 2016, https://doi.org/10.12989/sss.2016.17.4.631
- Footbridge system identification using wireless inertial measurement units for force and response measurements vol.384, 2016, https://doi.org/10.1016/j.jsv.2016.08.008
- A Tensor-Based Structural Damage Identification and Severity Assessment vol.18, pp.1, 2018, https://doi.org/10.3390/s18010111
- System identification of a historic swing truss bridge using a wireless sensor network employing orientation correction vol.22, pp.2, 2015, https://doi.org/10.1002/stc.1672
- Probabilistic Assessment of High-Throughput Wireless Sensor Networks vol.16, pp.12, 2016, https://doi.org/10.3390/s16060792
- Magnetic Resonance-Based Wireless Power Transmission through Concrete Structures vol.15, pp.2, 2015, https://doi.org/10.5515/JKIEES.2015.15.2.104
- Feasibility of displacement monitoring using low-cost GPS receivers vol.20, pp.9, 2013, https://doi.org/10.1002/stc.1532
- Feasibility Study of Micro-Wind Turbines for Powering Wireless Sensors on a Cable-Stayed Bridge vol.5, pp.12, 2012, https://doi.org/10.3390/en5093450
- Synchronized sensing for wireless monitoring of large structures vol.18, pp.5, 2016, https://doi.org/10.12989/sss.2016.18.5.885
- Mobile augmented reality visualization and collaboration techniques for on-site finite element structural analysis 2018, https://doi.org/10.1142/S1793962318400019
- Using inertial measurement units originally developed for biomechanics for modal testing of civil engineering structures vol.104, 2018, https://doi.org/10.1016/j.ymssp.2017.11.035
- Joint distribution of wind speed and direction in the context of field measurement vol.20, pp.5, 2015, https://doi.org/10.12989/was.2015.20.5.701
- Full-scale experimental validation of decentralized damage identification using wireless smart sensors vol.21, pp.11, 2012, https://doi.org/10.1088/0964-1726/21/11/115019
- Performance enhancement of a rotational energy harvester utilizing wind-induced vibration of an inclined stay cable vol.22, pp.7, 2013, https://doi.org/10.1088/0964-1726/22/7/075004
- Remote structural health monitoring systems for next generation SCADA vol.11, pp.5, 2013, https://doi.org/10.12989/sss.2013.11.5.511
- The state of the art in structural health monitoring of cable-stayed bridges vol.6, pp.1, 2016, https://doi.org/10.1007/s13349-015-0115-x
- Wind power spectra for coastal area of East Jiangsu Province based on SHMS vol.22, pp.2, 2016, https://doi.org/10.12989/was.2016.22.2.235
- A Recent Research Summary on Smart Sensors for Structural Health Monitoring vol.19, pp.3, 2015, https://doi.org/10.11112/jksmi.2015.19.3.010
- Deployment of a Smart Structural Health Monitoring System for Long-Span Arch Bridges: A Review and a Case Study vol.17, pp.9, 2017, https://doi.org/10.3390/s17092151
- A decentralized receptance-based damage detection strategy for wireless smart sensors vol.21, pp.5, 2012, https://doi.org/10.1088/0964-1726/21/5/055017
- Wireless MEMS-Based Accelerometer Sensor Boards for Structural Vibration Monitoring: A Review vol.17, pp.2, 2017, https://doi.org/10.1109/JSEN.2016.2630008
- Statistical Analysis of Modal Properties of a Cable-Stayed Bridge through Long-Term Wireless Structural Health Monitoring vol.22, pp.9, 2017, https://doi.org/10.1061/(ASCE)BE.1943-5592.0001093
- Smart wireless sensing and assessment for civil infrastructure vol.10, pp.4, 2014, https://doi.org/10.1080/15732479.2013.769011
- Traffic Safety Evaluation for Railway Bridges Using Expanded Multisensor Data Fusion vol.31, pp.10, 2016, https://doi.org/10.1111/mice.12210
- An energy harvesting system using the wind-induced vibration of a stay cable for powering a wireless sensor node vol.20, pp.7, 2011, https://doi.org/10.1088/0964-1726/20/7/075001
- Development of a wireless sensor network system for suspension bridge health monitoring vol.21, 2012, https://doi.org/10.1016/j.autcon.2011.06.008
- An Iterative Modal Identification Algorithm for Structural Health Monitoring Using Wireless Sensor Networks vol.29, pp.2, 2013, https://doi.org/10.1193/1.4000133
- Develoment of high-sensitivity wireless strain sensor for structural health monitoring vol.11, pp.5, 2013, https://doi.org/10.12989/sss.2013.11.5.477
- A wireless smart sensor network for automated monitoring of cable tension vol.23, pp.2, 2014, https://doi.org/10.1088/0964-1726/23/2/025006
- Comparative Field Study of Cable Tension Measurement for a Cable-Stayed Bridge vol.18, pp.8, 2013, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000421
- A Test Method for Damage Diagnosis of Suspension Bridge Suspender Cables vol.30, pp.10, 2015, https://doi.org/10.1111/mice.12144
- Self-reliant wireless health monitoring based on tuned-mass-damper mechanism vol.15, pp.6, 2015, https://doi.org/10.12989/sss.2015.15.6.1625
- Recent R&D activities on structural health monitoring in Korea vol.3, pp.1, 2016, https://doi.org/10.12989/smm.2016.3.1.091
- Wireless crack detection and analysis system for nuclear power plant 2015, https://doi.org/10.1080/19443994.2015.1006823
- Development of a cost-effective and flexible vibration DAQ system for long-term continuous structural health monitoring vol.64-65, 2015, https://doi.org/10.1016/j.ymssp.2015.04.003
- Statistics based localized damage detection using vibration response vol.14, pp.2, 2014, https://doi.org/10.12989/sss.2014.14.2.085
- Recent advances in wireless smart sensors for multi-scale monitoring and control of civil infrastructure vol.6, pp.1, 2016, https://doi.org/10.1007/s13349-015-0111-1
- Finite element modeling of the dynamic response of a composite reinforced concrete bridge for structural health monitoring vol.6, pp.2, 2014, https://doi.org/10.1007/s40091-014-0055-4
- Sensor Attitude Correction of Wireless Sensor Network for Acceleration-Based Monitoring of Civil Structures vol.30, pp.11, 2015, https://doi.org/10.1111/mice.12147
- Multiscale Acceleration-Dynamic Strain-Impedance Sensor System for Structural Health Monitoring vol.8, pp.10, 2012, https://doi.org/10.1155/2012/709208
- Railroad bridge monitoring using wireless smart sensors vol.24, pp.2, 2017, https://doi.org/10.1002/stc.1863
- The Nonuniform Node Configuration of Wireless Sensor Networks for Long-Span Bridge Health Monitoring vol.9, pp.9, 2013, https://doi.org/10.1155/2013/797650
- Estimation of the dynamic response of a slender suspension bridge using measured acceleration data vol.199, 2017, https://doi.org/10.1016/j.proeng.2017.09.547
- Decentralized random decrement technique for efficient data aggregation and system identification in wireless smart sensor networks vol.26, pp.1, 2011, https://doi.org/10.1016/j.probengmech.2010.07.002
- Wireless structural health monitoring of stay cables under two consecutive typhoons vol.1, pp.1, 2014, https://doi.org/10.12989/smm.2014.1.1.047
- Bayesian network-based modal frequency–multiple environmental factors pattern recognition for the Xinguang Bridge using long-term monitoring data pp.2048-4046, 2018, https://doi.org/10.1177/1461348418786520
- LoRa LPWAN Sensor Network for Real-Time Monitoring and It’s Control Method vol.31, pp.6, 2018, https://doi.org/10.7734/COSEIK.2018.31.6.359
- Effect of Tensile Force on Magnetostrictive Sensors for Generating and Receiving Longitudinal Mode Guided Waves in Steel Wires vol.2019, pp.1687-7268, 2019, https://doi.org/10.1155/2019/9512190
- Flexible smart sensor framework for autonomous structural health monitoring vol.6, pp.5, 2010, https://doi.org/10.12989/sss.2010.6.5_6.423
- Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation vol.6, pp.5, 2010, https://doi.org/10.12989/sss.2010.6.5_6.439
- Reliable multi-hop communication for structural health monitoring vol.6, pp.5, 2010, https://doi.org/10.12989/sss.2010.6.5_6.481
- Solar-powered multi-scale sensor node on Imote2 platform for hybrid SHM in cable-stayed bridge vol.9, pp.2, 2010, https://doi.org/10.12989/sss.2012.9.2.145
- Quasi-static Responses Estimation of a Cable-stayed Bridge from Displacement Data at a Limited Number of Points vol.17, pp.2, 2010, https://doi.org/10.1007/s13296-017-6032-6
- Dynamic modeling and control of IPMC hydrodynamic propulsor vol.20, pp.4, 2010, https://doi.org/10.12989/sss.2017.20.4.499
- Sistema inteligente, sostenible e integrado de gestión de estructuras = Intelligent, sustainable and integrated structure management system vol.4, pp.2, 2010, https://doi.org/10.20868/ade.2018.3778
- An integrated structural health monitoring system for the Xijiang high-speed railway arch bridge vol.21, pp.5, 2010, https://doi.org/10.12989/sss.2018.21.5.611
- 최소화된 계측 및 신호 처리 시스템을 이용한 상시진동 케이블의 효율적인 장력 추정에 관한 연구 vol.19, pp.11, 2018, https://doi.org/10.5762/kais.2018.19.11.594
- High resolution operational modal analysis on a five-story smart building under wind and human induced excitation vol.176, pp.None, 2018, https://doi.org/10.1016/j.engstruct.2018.08.060
- Technology Leveraging for Infrastructure Asset Management: Challenges and Opportunities vol.5, pp.None, 2019, https://doi.org/10.3389/fbuil.2019.00061
- Modal flexibility based damage detection for suspension bridge hangers: A numerical and experimental investigation vol.23, pp.1, 2010, https://doi.org/10.12989/sss.2019.23.1.015
- CNN-based damage identification method of tied-arch bridge using spatial-spectral information vol.23, pp.5, 2019, https://doi.org/10.12989/sss.2019.23.5.507
- Bayesian forecasting approach for structure response prediction and load effect separation of a revolving auditorium vol.24, pp.4, 2010, https://doi.org/10.12989/sss.2019.24.4.507
- Damping estimates from reconstructed displacement for low-frequency dominant structures vol.136, pp.None, 2020, https://doi.org/10.1016/j.ymssp.2019.106533
- Modal parameter identification with compressed samples by sparse decomposition using the free vibration function as dictionary vol.25, pp.2, 2020, https://doi.org/10.12989/sss.2020.25.2.123
- Long term structural health monitoring for old deteriorated bridges: a copula-ARMA approach vol.25, pp.3, 2020, https://doi.org/10.12989/sss.2020.25.3.285
- Towards rapid and robust measurements of highway structures deformation using a wireless sensing system derived from wired sensors vol.10, pp.2, 2010, https://doi.org/10.1007/s13349-020-00385-5
- Vision-Based Monitoring of Post-Tensioned Diagonals on Miter Lock Gate vol.146, pp.10, 2010, https://doi.org/10.1061/(asce)st.1943-541x.0002777
- Inspection of surface defects on stay cables using a robot and transfer learning vol.119, pp.None, 2010, https://doi.org/10.1016/j.autcon.2020.103382
- Damping estimation of a pedestrian footbridge - an enhanced frequency-domain automated approach vol.23, pp.1, 2010, https://doi.org/10.21595/jve.2020.21577
- An Enhanced Inverse Filtering Methodology for Drive-By Frequency Identification of Bridges Using Smartphones in Real-Life Conditions vol.4, pp.2, 2010, https://doi.org/10.3390/smartcities4020026
- Experimental investigation on energy harvesting performance of regenerative hybrid electrodynamic damper vol.334, pp.None, 2010, https://doi.org/10.1016/j.sna.2021.113317