Acknowledgement
Supported by : Korea Science and Engineering Foundation, Korea Research Foundation
References
- Alleyne, D.N. and Cawley, P. (1996), "The excitation of Lamb waves in pipes using dry-coupled piezoelectric transducers", J. Nondestruct. Eval., 15(1), 11-20. https://doi.org/10.1007/BF00733822
- Chondros, T.G., Dimarogonas, A.D. and Yao, J. (1998), "A continuous cracked beam vibration theory", J. Sound Vib., 215(1), 17-34. https://doi.org/10.1006/jsvi.1998.1640
- Dunteman, G.H. (1989), Principal Components Analysis, Sage Publisher, Newbury Park, CA.
- Dutta, D., Sohn, H., Harries, K.A. and Rizzo, P. (2009), "A nonlinear acoustic technique for crack detection in metallic structures", Struct. Health Monit., 8(3), 251-262. https://doi.org/10.1177/1475921709102105
- Flury, B. (1988), Common principal components and related multivariate models, Wiley Publisher, New York, NY.
- Fromme, P. and Sayir, M.B. (2002), "Monitoring of fatigue crack growth at fastener holes using guided Lamb waves", Proceedings of the AIP Conference, Review of progress in Quantitative Nondestructive Evaluation, 615, 247-254.
- Fromme, P., Lowe, M.J.S., Cawley, P. and Wilcox, P.D. (2004), "On the sensitivity of corrosion and fatigue damage detection using guided ultrasonic waves", Proceedings of the IEEE Ultrasonic Symposium, 2, 1203-1206.
- Giurgiutiu, V. and Rogers, C.A. (1997), "Electro-mechanical (E/M) impedance method for structural health monitoring and non-destructive evaluation", Proceedings of the International Workshop on Structural Health Monitoring, 433-444.
- Giurgiutiu, V. (2005), "Tuned lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring", J. Intel. Mat. Syst. Str., 16(4), 291-305. https://doi.org/10.1177/1045389X05050106
- Gupta, S., Ray, A. and Keller, E. (2007), "Symbolic time series analysis of ultrasonic data for early detection of fatigue damage", Mech. Syst. Signal Pr., 21(2), 866-884. https://doi.org/10.1016/j.ymssp.2005.08.022
- Hotelling, K. (1933), "Analysis of a complex of statistical variables into principal component", J. Educ. Psychol., 24(6), 417-441. https://doi.org/10.1037/h0071325
- Jolliffe, I.T. (2002), Principal component analysis (2nd Edition), Springer, New York, NY.
- Johnson, M. (2002), "Waveform based clustering and classification of AE transients in composite laminates using principal component analysis", NDT&E Int., 35, 367-376. https://doi.org/10.1016/S0963-8695(02)00004-X
- Kim, S.B. and Sohn, H. (2008), "Continuous fatigue crack monitoring without baseline data", Fatigue Fract. Eng. Mater. Struct., 31(8), 644-659. https://doi.org/10.1111/j.1460-2695.2008.01254.x
- Kundu, T. (2004), Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization, CRC Press, USA.
- Leong, W.H., Staszewski, W.J., Lee, B.C. and Scarpa, F. (2005), "Structural health monitoring using scanning laser vibrometry: III. Lamb waves for fatigue crack detection", Smart Mater. Struct., 14, 1387-1395. https://doi.org/10.1088/0964-1726/14/6/031
- Mallat, S.G. (1989), "A theory for multiresolution signal decomposition: the wavelet representation", IEEE Trans. Pattern Anal. Mach. Intell., 11, 674-693. https://doi.org/10.1109/34.192463
- Mallat, S.G. (1999), A Wavelet Tour of Signal Processing, Academic Press, New York, NY.
- Manson, G., Worden, K., Holford, K., Pullin, R. (2001), "Visualisation and dimension reduction of acoustic emission data for damage detection", J. Intel. Mat. Syst. Str., 12(8), 529-536. https://doi.org/10.1177/10453890122145375
- Mustapha, F., Manson, G., Pierce, S.G. and Worden, K. (2005), "Structural health monitoring of an annular component using a statistical approach", Strain, 41(3), 117-127. https://doi.org/10.1111/j.1475-1305.2005.00207.x
- Mustapha, F., Worden, K., Pierce, S.G. and Manson, G. (2007), "Damage detection using stress waves and multivariate statistics: an experimental case study of an aircraft component", Strain, 43(1), 47-53. https://doi.org/10.1111/j.1475-1305.2007.00306.x
- Ni, Y.Q., Zhou, X.T. and Ko, J.M. (2006), "Experimental investigation of seismic damage identification using PCA-compressed frequency response functions and neural networks", J. Sound Vib., 290(1-2), 242-263. https://doi.org/10.1016/j.jsv.2005.03.016
- Paget, C.A., Grondel, S., Levin, K. and Delebarre, C. (2003), "Damage assessment in composites by lamb waves and wavelet coefficients", Smart Mater. Struct., 12(3), 393-402. https://doi.org/10.1088/0964-1726/12/3/310
- Park, G., Sohn, H., Farrar, C.R. and Inman, D.J. (2003), "Overview of piezoelectric impedance-based health monitoring and path forward", Shock Vib. Dig., 35(6), 451-463. https://doi.org/10.1177/05831024030356001
- Park, S., Yun, C.B. and Roh, Y. (2006), "Active sensing-based real-time nondestructive evaluations for steel bridge members", KSCE J. Civil Eng., 10(1), 33-39.
- Pearson, K. (1901), "On lines and planes of closest fit to systems of points in space", Philos. Mag., 2(6), 559-572. https://doi.org/10.1080/14786440109462720
- Rippengill, S., Worden, K., Holford, K.M. and Pullin, R. (2003), "Automatic classification of AE patterns", Strain, 39, 31-41. https://doi.org/10.1046/j.1475-1305.2003.00041.x
- Rizzo, P. and Lanza di Scalea, F. (2005), "Ultrasonic inspection of multi-wire steel strands with the aid of the wavelet transform", Smart Mater. Struct., 14(4), 685-695. https://doi.org/10.1088/0964-1726/14/4/027
- Rizzo, P. and Lanza di Scalea, F. (2006), "Wavelet-based feature extraction for automatic defect classification in strands by ultrasonic structural monitoring", Smart Struct. Syst., 2(3), 253-274. https://doi.org/10.12989/sss.2006.2.3.253
- Rizzo, P. and Lanza di Scalea, F. (2007), Wavelet-based unsupervised and supervised learning algorithms for ultrasonic structural monitoring of waveguides, Progress in Smart Materials and Structures Research, Ed. Peter L. Reece, NOVA Science Publishers, New York.
- Rizzo, P., Sorrivi, E., Lanza di Scalea, F. and Viola, E. (2007), "Wavelet-based outlier analysis for guided wave structural monitoring: application to multi-wire strands", J. Sound Vib., 307(1-2), 52-68. https://doi.org/10.1016/j.jsv.2007.06.058
- Rizzo, P., Cammarata, M., Dutta, D., Sohn, H. and Harries, K.A. (2009), "An unsupervised learning algorithm for fatigue crack detection in waveguides", Smart Mater. Struct., 18(2), 025016 (11pp), doi:10.1088/0964-1726/18/2/ 025016.
- Roberts, T.M. and Talebzadeh, M. (2003), "Acoustic emission monitoring of fatigue crack propagation", J. Constr. Steel Res., 59(6), 695-712. https://doi.org/10.1016/S0143-974X(02)00064-0
- Rose, J.L. (1999), Ultrasonic Waves in Solid Media, Cambridge University Press, United Kingdom.
- Scala, C.M. and Bowles, S.J. (2000), "Laser ultrasonics for surface-crack depth measurement using transmitted near-field", Proceedings of the AIP Conference, Review of progress in Quantitative Nondestructive Evaluation, 509, 327-334.
- Sharma, S. (1996), Applied multivariate techniques, John Wiley, New York, NY.
- Sohn, H., Worden, K. and Farrar, C.R. (2002), "Statistical damage classification under changing environmental and operational conditions", J. Intel. Mat. Syst. Str., 13(9), 561-574. https://doi.org/10.1106/104538902030904
- Sophian, A., Tian, G.Y., Taylor, D. and Rudlin, J. (2001), "Electromagnetic and eddy current NDT: a review", Insight, 43(5), 302-306.
- Staszewski, W.J. (2003), "Structural health monitoring using guided ultrasonic waves", Proceedings of the AMAS & ECCOMAS Workshop/Thematic Conference SMART'03 on Smart Materials and Structures, Jadwisin, Poland, September.
- Staszewski, W.J., Lee, B.C. and Traynor, R. (2007), "Fatigue crack detection in metallic structures with Lamb waves and 3D laser vibrometry", Meas. Sci. Technol., 18, 727-739. https://doi.org/10.1088/0957-0233/18/3/024
- Tong, F., Tso, S.K., Hung, M.Y.Y. (2006), "Impact-acoustics-based health monitoring of tile-wall bonding integrity using principal component analysis", J. Sound Vib., 294(1-2), 329-340. https://doi.org/10.1016/j.jsv.2005.11.017
- Worden, K., Pierce, S.G., Manson, G., Philp, W.R., Staszewski, W.J. and Culshaw, B. (2000), "Detection of defects in composite plates using Lamb waves and novelty detection", Int. J. Syst. Sci., 31, 1397-1409. https://doi.org/10.1080/00207720050197785
- Yan, A.M., Kerschen, G., De Boe, P. and Golinval, J.C. (2005a), "Structural damage diagnosis under varying environmental conditions-Part I: A linear analysis", Mech. Syst. Signal Pr., 19(4), 847-864. https://doi.org/10.1016/j.ymssp.2004.12.002
- Yan, A.M., Kerschen, G., De Boe, P. and Golinval, J.C. (2005b), "Structural damage diagnosis under varying environmental conditions-Part II: local PCA for non-linear cases", Mech. Syst. Signal Pr., 19(4), 865-880. https://doi.org/10.1016/j.ymssp.2004.12.003
Cited by
- Guided waves for damage detection in rebar-reinforced concrete beams vol.47, 2013, https://doi.org/10.1016/j.conbuildmat.2013.05.016
- An Improved Incremental Learning Approach for KPI Prognosis of Dynamic Fuel Cell System vol.46, pp.12, 2016, https://doi.org/10.1109/TCYB.2015.2498194
- Crack imaging and quantification in aluminum plates with guided wave wavenumber analysis methods vol.62, 2015, https://doi.org/10.1016/j.ultras.2015.05.019
- Guided waves for the health monitoring of sign support structures under varying environmental conditions vol.20, pp.2, 2013, https://doi.org/10.1002/stc.481
- Fractal dimension–based Lamb wave tomography algorithm for damage detection in plate-like structures vol.23, pp.11, 2012, https://doi.org/10.1177/1045389X12445648
- Applying robust variant of Principal Component Analysis as a damage detector in the presence of outliers vol.50-51, 2015, https://doi.org/10.1016/j.ymssp.2014.05.032
- A unified approach for the structural health monitoring of waveguides vol.11, pp.6, 2012, https://doi.org/10.1177/1475921712438569
- Time domain damage localization and quantification in seismically excited structures using a limited number of sensors vol.23, pp.18, 2017, https://doi.org/10.1177/1077546315625141
- Flaw Detection by Using Hardware-in-Loop Based on Proteus vol.466-467, pp.1662-8985, 2012, https://doi.org/10.4028/www.scientific.net/AMR.466-467.1315
- Lamb Wave Based Monitoring of Fatigue Crack Growth Using Principal Component Analysis vol.558, pp.1662-9795, 2013, https://doi.org/10.4028/www.scientific.net/KEM.558.260
- Ultrasonic characterization of exhumed cast iron water pipes vol.7, pp.4, 2010, https://doi.org/10.12989/sss.2011.7.4.241
- Reliability improvement of nonlinear ultrasonic modulation based fatigue crack detection using feature-level data fusion vol.20, pp.6, 2017, https://doi.org/10.12989/sss.2017.20.6.683