DOI QR코드

DOI QR Code

Ionic Polymer Transducers in sensing: the streaming potential hypothesis

  • Weiland, Lisa Mauck (Department of Mechanical Engineering and Materials Science, University of Pittsburgh) ;
  • Akle, Barbar (Department of Mechanical Engineering, Lebanese American University)
  • 투고 : 2008.07.07
  • 심사 : 2009.08.01
  • 발행 : 2010.04.25

초록

Accurate sensing of mechanical strains in civil structures is critical for optimizing structure reliability and lifetime. For instance, combined with intelligent control systems, electromechanical sensor output feedback has the potential to be employed for nondestructive damage evaluation. Application of Ionic Polymer Transducers (IPTs) represents a relatively new sensing approach with more than an order of magnitude higher sensitivity than traditional piezoelectric sensors. The primary reason this sensor has not been widely used to date is an inadequate understanding of the physics responsible for IPT sensing. This paper presents models and experiments defending the hypothesis of a streaming potential sensing mechanism.

키워드

참고문헌

  1. Akle, B.J. (2005), Characterization and modeling of the ionomer-conductor interface in ionic polymer transducers, Ph.D. Dissertation, Virginia Polytechnic Institute and State University.
  2. Akle, B.J., Bennett, M., Leo, D.J., Wiles, K.B. and McGrath, J.E. (2007a), "Direct assembly process: a novel fabrication technique for large strain ionic polymer transducers", J. Mater. Sci., 42(16), 7031-7041. https://doi.org/10.1007/s10853-006-0632-4
  3. Akle, B.J., Hickner, M.A., Leo, D.J. and McGrath, J.E. (2005), "Correlation of capacitance and actuation in ionomeric polymer transducers", J. Mater. Sci., 40, 3715-3724. https://doi.org/10.1007/s10853-005-3312-x
  4. Akle, B.J., Nashwin, S. and Leo, D.J. (2007b), "Reliability of high-strain ionomeric polymer transducers fabricated using the novel direct assembly process", Smart Mater. Struct., 16(2), S256-S261 (http://www.iop.org/EJ/abstract/0964-1726/16/2/S09/). https://doi.org/10.1088/0964-1726/16/2/S09
  5. Asaka, K. and Oguro, K. (2000), "Bending of polyelectrolyte membrane platinum composites by electric stimuli Part II. Response kinetics", J. Electroanal. Chem., 480, 186-198. https://doi.org/10.1016/S0022-0728(99)00458-1
  6. Bennett, M.D. and Leo, D.J. (2004), "Ionic liquids as stable solvents for ionic polymer transducers", Sensor. Actuat. A-Phys., 115(1), 79-90. https://doi.org/10.1016/j.sna.2004.03.043
  7. Bonomo, C., Fortuna, L., Giannone, P., Graziani, S. and Strazzeri, S. (2006), "A model for ionic polymer metal composites as sensors", Smart Mater. Struct., 15(3), 749-758. https://doi.org/10.1088/0964-1726/15/3/010
  8. Bockris, J.O.M., Devanathan, M. and Müller, K. (1963), "On structure of charged interfaces", Proc. R. Soc. Lon. A., 274, 55-79. https://doi.org/10.1098/rspa.1963.0114
  9. Chapman, D. (1913), "A contribution to the theory of electrocapillarity", Philos. Mag., 25, 475-481. https://doi.org/10.1080/14786440408634187
  10. Daiguji, H., Yang, P., Szeri, A.J. and Majumdar, A. (2004), "Electrochemomechanical energy conversion in nanofluidic channels", Nano Lett., 4(12), 2315-2321. https://doi.org/10.1021/nl0489945
  11. Datye, V.K., Taylor, P.L. and Hopfinger, A.J. (1984), "Simple model for clustering and ionic transport in ionomer membranes", Macromolecules, 17, 1704-1708. https://doi.org/10.1021/ma00139a011
  12. Datye, V.K. and Taylor, P.L. (1985), "Electrostatic contributions to the free energy of clustering of an ionomer", Macromolecules, 18, 1479-1482. https://doi.org/10.1021/ma00149a019
  13. Etebari, A., Akle, B.J., Bennett, M., Leo, D.J. and Vlachos, P. (2005), "A dynamic shear stress sensor for liquid environments", Proceedings of the ASME 2nd International Symposium on Seawater Drag Reduction, Busan, Korea, May.
  14. Farinholt, K. and Leo, D.J. (2004), "Modeling of electromechanical charge sensing in ionic polymer transducers", Mech. Mater., 36(5), 421-433. https://doi.org/10.1016/S0167-6636(03)00069-3
  15. Gao, F. and Weiland, L.M. (2008), "Modeling of the electromechanical response of ionic polymer transducers by means of streaming potential mechanism", Proceedings of the ASME SMASIS, Ellicott City, MD, October.
  16. de Gennes, P.G., Okumura, K., Shahinpoor, M. and Kim, K.J. (2000), "Mechanoelectric effects in ionic gels", Europhys. Lett., 50(4), 513-518. https://doi.org/10.1209/epl/i2000-00299-3
  17. Grahame, D.C. (1947), "The electrical double layer and the theory of electrocapillarity", Chem. Rev., 41(3), 441-501. https://doi.org/10.1021/cr60130a002
  18. Gouy, G. (1910), "Constitution of the electric charge at the surface of an electrolyte", J. Phys. Radium, 9, 457-468.
  19. Helmholtz, H. (1853), "Some laws concerning the distribution of electrical currents in conductors with applications to experiments on animal electricity", Annalen der Physik und Chemie, 89(6), 211-233.
  20. van der Heyden, F.H.J., Stein, D. and Dekker, C. (2005), "Streaming currents in a single nanofluidic channel", Phys. Rev. Lett., 95, 116104-116108. https://doi.org/10.1103/PhysRevLett.95.116104
  21. Hsu, W.Y. and Gierke, T.D. (1982), "Elastic theory for ionic clustering in perfluorinated ionomers", Macromolecules, 15, 101-105. https://doi.org/10.1021/ma00229a020
  22. Kanno, R., Tadokoro, S., Takamori, T. and Hattori, M. (1996), "Linear approximate dynamic model of ICPF actuator", Proceedings of the IEEE International Conference on Robotics and Automation, Piscataway, NJ.
  23. Li, J.Y. and Nemat-Nasser, S. (2000), "Micromechanical analysis of ionic clustering in Nafion perfluorinated membrane", Mech. Mater., 32, 303-314. https://doi.org/10.1016/S0167-6636(00)00002-8
  24. McGrath, J.E. and Zawodzinski, T. (2005), "Advances in materials for proton exchange membrane fuel cell systems", Proceedings of the Asilomar Conference Grounds, Pacific Grove, California, February.
  25. Nemat-Nasser, S. (2002), "Micromechanics of actuation of ionic polymer-metal composites", J. Appl. Phys., 92(5), 2899-2915. https://doi.org/10.1063/1.1495888
  26. Nemat-Nasser, S. and Li, J.Y. (2000), "Electromechanical response of ionic polymer-metal composites", J. Appl. Phys., 87(7), 3321-3331. https://doi.org/10.1063/1.372343
  27. Newbury, K. and Leo, D.J. (2002), "Electromechanical modeling and characterization of ionic polymer benders", J. Intel. Mat. Syst. Str., 13(1), 51-60. https://doi.org/10.1177/1045389X02013001978
  28. Newbury, K.M. and Leo, D.J. (2003), "Linear electromechanical model of ionic polymer transducers part I: Model development", J. Intel. Mat. Syst. Str., 14, 333-342. https://doi.org/10.1177/1045389X03034976
  29. Oguro, K., Kawami, Y. and Takenaka, H. (1992), "Bending of an ion-conducting polymer filmelectrode composite by an electrical stimulus at low voltage", J. Micromach. Soc., 5, 27-30.
  30. Paddison, S.J. (2003), "Proton conducting mechanisms at low degrees of hydration in sulfonic acid-based polymer electrolyte membranes", Annu. Rev. Mater. Res., 33, 289-319. https://doi.org/10.1146/annurev.matsci.33.022702.155102
  31. Sadeghipour, K., Salomon, R. and Neogi, S. (1992), "Development of a novel electrochemically active membrane and 'smart' material based vibration sensor/damper", Smart Mater. Struct., 1(2), 172-179. https://doi.org/10.1088/0964-1726/1/2/012
  32. Schmidt-Rohr, K. and Chen, Q. (2008), "Parallel cylindrical water nanochannels in Nafion fuel-cell membranes", Nat. Mater., 7(1), 75-83. https://doi.org/10.1038/nmat2074
  33. Shahinpoor, M., Bar-Cohen, Y., Simpson, J.O. and Smith, J. (1998), "Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - a review", Smart Mater. Struct., 7(6), R15-R31. https://doi.org/10.1088/0964-1726/7/6/001
  34. Stern, O. (1924), "On the theory of the electrical double layer", Z. Elektrochem, 30, 508-516.
  35. Tadokoro, S., Takamori, T. and Oguru, K. (2001), Modeling of IPMC for design of actuation mechanisms, Electroactive Polymer Actuators as Artificial Muscles, (Ed. Y. Bar-Cohen), SPIE Publishing, Bellingham, WA, USA.
  36. Weiland, L.M. and Leo, D.J. (2005a), "Computational analysis of ionic polymer cluster energetics", J. Appl. Phys., 97(12).
  37. Weiland, L.M. and Leo, D.J. (2005b), "Ionic polymer cluster energetics: computational analysis of pendant chain stiffness and charge imbalance", J. Appl. Phys., 97(12).
  38. Yeager, H.L. and Kipling, B. (1979), "Ionic diffusion and ion clustering in a perfluorosulfonate ion-exchange membrane", J. Phys. Chem., 83(14), 1835-1839.
  39. Yun, G.J., Ogorzalek, K.A., Dyke, S.J. and Song, W. (2009), "A two-stage damage detection approach based on subset selection and genetic algorithms", Smart Struct. Syst., 5(1), 1-21. https://doi.org/10.12989/sss.2009.5.1.001

피인용 문헌

  1. Implications of multiscale modeling on sensing predictions in Nafion vol.19, pp.9, 2010, https://doi.org/10.1088/0964-1726/19/9/094011
  2. Compression and shear mode ionic polymer-metal composite (IPMC) pressure sensors vol.260, 2017, https://doi.org/10.1016/j.sna.2017.04.010
  3. Experimental and theoretical investigation of ionic polymer transducers in shear sensing vol.26, pp.15, 2015, https://doi.org/10.1177/1045389X14546779
  4. Streaming Potential Hypothesis for Ionic Polymer Transducers in Sensing: Roles of Ionomer State and Morphology vol.22, pp.14, 2011, https://doi.org/10.1177/1045389X11409789
  5. Experimental investigation of the streaming potential hypothesis for ionic polymer transducers in sensing vol.22, pp.3, 2013, https://doi.org/10.1088/0964-1726/22/3/035020
  6. Prediction of the ionic polymer transducer sensing of shear loading vol.20, pp.9, 2011, https://doi.org/10.1088/0964-1726/20/9/094013
  7. Design of an improved signal conditioning circuit for ionic polymer sensors based on the streaming potential hypothesis vol.24, pp.9, 2013, https://doi.org/10.1177/1045389X12469448
  8. Dynamic modeling and control of IPMC hydrodynamic propulsor vol.20, pp.4, 2010, https://doi.org/10.12989/sss.2017.20.4.499
  9. Fabrication and transient responses of highly flexible and humidity-insensitive ionic polymer-metal composites in different sensory modes vol.30, pp.11, 2010, https://doi.org/10.1177/1045389x19844000