DOI QR코드

DOI QR Code

Control of PKM machine tools using piezoelectric self-sensing actuators on basis of the functional principle of a scale with a vibrating string

  • Rudolf, Christian (Institut fur Technische Mechanik (ITM), Universitat Karlsruhe (TH)) ;
  • Martin, Thomas (Forschungszentrum Karlsruhe GmbH, Institut fur Angewandte Informatik (IAI)) ;
  • Wauer, Jorg (Institut fur Technische Mechanik (ITM), Universitat Karlsruhe (TH))
  • Received : 2008.04.10
  • Accepted : 2009.10.28
  • Published : 2010.03.25

Abstract

An adaptronic strut for machine tools with parallel kinematics for compensation of the influence of geometric errors is introduced. Implemented within the strut is a piezoelectric sensor-actuator unit separated in function. In the first part of this contribution, the functional principle of the strut is presented. For use of one piezoelectric transducer as both, sensor and actuator as so-called self-sensing actuator, the acquisition of the sensing signal while actuating simultaneously using electrical bridge circuits as well as filter properties are examined. In the second part the control concept developed for the adaptronic strut is presented. A co-simulation model of the strut for simulating the controlled multi-body behavior of the strut is set-up. The control design for the strut as a stand-alone system is tested under various external loads. Finally, the strut is implemented into a model of the complete machine tool and the influence of the controlled strut onto the behavior of the machine tool is examined.

Keywords

References

  1. Babuka, V. and O'Donnell, R. (1998), "Self-sensing actuators for precision structures", In Aerospace Conf., 1998. Proc., IEEE.
  2. Bill, B. (2002), Messen mit Kristallen: Grundlagen und Anwendungen der piezoelektrischen Messtechnik, Verlag Moderne Industrie.
  3. D'Azzo, J., Houpis, C. and Sheldon, S. (2003), Linear Control System Analysis and Design with Matlab, Taylor & Francis.
  4. Fleischer, J., Knödel, A., Munzinger, C. and Weis, M. (2006), "Designing adaptronical components for compensation of static and quasi-static loads", In Proc. of IDETC/CIE Conf., ASME, (DETC2006-99461).
  5. Follinger, O. (1994), Regelungstechnik, Huthig.
  6. Janocha, H. and Kuhnen, K. (2002), "Real-time compensation of hysteresis and creep in piezoelectric actuators", Sensor Actuat. A-Phys., 79, 83-89.
  7. Janocha, H. and Kuhnen, K. (2006), Self-sensing effects in solid-state actuators, In Encyclopedia of Sensors, American Scientific Publishers, 9, 53-73.
  8. Jones, L., Garcia, E. and Waites, H. (1994), "Self-sensing control as applied to a PZT stack actuator used as a micropositioner", Smart Mater. Struct., 3(2), 147-156. https://doi.org/10.1088/0964-1726/3/2/010
  9. Kuhnen, K. and Janocha, H. (2001), "Inverse feedforward controller for complex hysteretic nonlinearities in smart material systems", Control Intel. Syst., 29(3), 74-83.
  10. Lunze, J. (2005), Regelungstechnik 1, Springer.
  11. Lunze, J. (2004), Regelungstechnik 2, Springer.
  12. Munzinger, C. (2007), Adaptronische Strebe zur Steifigkeitssteigerung von Werkzeugmaschinen, Shaker (in German).
  13. Preumont, A. (2002), Vibration Control of Active Structures - An Introduction, Kluwer Academic Publishers.
  14. Rudolf, C., Wauer, J., Fleischer, J. and Munzinger, C. (2005), "An approach for compensation of geometric faults in machine tools", In Proc. IDETC/CIE Conf., ASME, (DETC2005-84241).
  15. Rudolf, C., Wauer, J., Fleischer, J. and Munzinger, C. (2006), "Measuring static and slowly changing loads using piezoelectric sensors", In Proc. 10th Int. Conf. on New Actuators (P015).
  16. Rudolf, C., Wauer, J., Munzinger, C. and Weis, M. (2007), "Piezoelectric control of a machine tool with parallel kinematics", In Proc. SPIE - Smart Structures and Materials and NDE Health Monitoring and Diagnostics, (6527-15).
  17. Ruschmeyer, K. (1995), Piezokeramik, expert verlag.
  18. Tsui, C.C. (2004), Robust Control System Design, Advanced State Space Techniques, Marcel Dekker, Inc.
  19. Xiang, H. and Shi, Z. (2009), "Static analysis of a multilayer piezoelectric actuator with bonding layers and electrodes", Smart Struct. Syst., 5(5), 547-564. https://doi.org/10.12989/sss.2009.5.5.547

Cited by

  1. Note: Self-sensing based on charge control improves the performance of active damping using piezoelements vol.83, pp.2, 2012, https://doi.org/10.1063/1.3681939
  2. Stochastic optimal control analysis of a piezoelectric shell subjected to stochastic boundary perturbations vol.9, pp.3, 2012, https://doi.org/10.12989/sss.2012.9.3.231
  3. On FEM modeling of piezoelectric actuators and sensors for thin-walled structures vol.9, pp.5, 2010, https://doi.org/10.12989/sss.2012.9.5.411
  4. Optimal placement of piezoelectric actuator/senor patches pair in sandwich plate by improved genetic algorithm vol.26, pp.6, 2010, https://doi.org/10.12989/sss.2020.26.6.721