DOI QR코드

DOI QR Code

Electromagnetic actuator design for the control of light structures

  • Der Hagopian, Johan (Laboratoire de Mecanique des Contacts et des Structures- UMR CNRS 5259, Institut National des Sciences Appliquees de Lyon) ;
  • Mahfoud, Jarir (Laboratoire de Mecanique des Contacts et des Structures- UMR CNRS 5259, Institut National des Sciences Appliquees de Lyon)
  • Received : 2008.07.31
  • Accepted : 2009.05.14
  • Published : 2010.01.25

Abstract

An ElectroMagnetic Actuator (EMA) is designed and assessed numerically and experimentally. The EMA has the advantage to be without contact with the structure so it could be applied to light and small mechanism. Nevertheless, the open-loop instability and the nonlinear dynamic behavior with respect to the excitation frequency could limit its application field. The EMA is designed and dimensioned as a function of the experimental structure to be controlled. An inverse model of the EMA is proposed in order to implement a linear action block for the used frequency range. The control strategy is a fuzzy controller with displacements and velocities as inputs. A fuzzy controller of Takagi-Sugeno type is used. The air gap is estimated by using a modal approximation of the displacements issued from all measurements. Several configurations of control are assessed by using numerical simulations. The block diagram used for numerical simulations is implemented under Dspace$^{(R)}$ environment. The implemented controller was tested experimentally in the context of impact perturbations. The results obtained show the effectiveness of the developed procedures and the robustness of the implemented control.

Keywords

References

  1. Aenis, M., Knopf, E. and Nordmann, R. (2002), "Active magnetic bearings for the identification and fault diagnosis in turbomachinery", Mechatronics, 12, 1011-1021. https://doi.org/10.1016/S0957-4158(02)00009-0
  2. Couzon, P.Y. and Der Hagopian, J. (2007), "Neuro-Fuzzy active control of rotor suspended on active magnetic bearing", J. Vib. Control, 13(4), 365-384. https://doi.org/10.1177/1077546307074578
  3. El-Shafei, A. and Dimitri, A.S. (2007), "Controlling journal bearing instability using active magnetic bearings", Proc. of ASME Turbo Expo, GT2007-28059, Canada.
  4. Forrai, A., Ueda, T. and Yumura, T. (2007), "Electromagnetic actuator control: a linear parameter-varying (LPV) approach", IEEE T. Cont. Syst. T., 54(3), 1430-1441.
  5. Fung, R.F., Liu, Y.T. and Wang, C.C. (2005), "Dynamic model of an electromagnetic actuator for vibration control of a cantilever beam with a tip mass", J. Sound Vib., 288, 957-980. https://doi.org/10.1016/j.jsv.2005.01.046
  6. Kasarda, M., Mendoza, H., Kirk, R.G. and Wicks, A. (2004), "Reduction of subsynchronous vibrations in a single-disk rotor using an active magnetic damper", Mech. Res. Commun., 31, 689-695. https://doi.org/10.1016/j.mechrescom.2004.04.004
  7. Kasarda, M., Marshall, J. and Prins, R. (2007), "Active magnetic bearing based force measurement using the multi-point technique", Mech. Res. Commun., 34, 44-53. https://doi.org/10.1016/j.mechrescom.2006.06.003
  8. Lalanne, M., Berthier, P. and Der Hagopian, J. (1983), Mechanical vibrations for engineers, A Wiley-Interscience publication, 266 p.
  9. Lee, S.Q. and Gweon, D.G. (2000), "A new 3 DOF Z-tilts micropositioning system using electromagnetic actuators and air bearings", Precis. Eng., 24, 24-31. https://doi.org/10.1016/S0141-6359(99)00022-7
  10. Lei, S. and Palazzolo, A. (2008), "Control of flexible rotor systems with active magnetic bearings", J. Sound Vib., 314(1-2), 19-38. https://doi.org/10.1016/j.jsv.2007.12.028
  11. Liu, J. and Liu, K. (2008), "Application of an active electromagnetic vibration absorber in vibration suppression", Struct. Control Health Monit., DOI: 10.1002/stc.288.
  12. Mahlis, M., Gaudiller, L. and Der Hagopian, J. (2005), "Fuzzy modal active control of the dynamic behavior of flexible structures", J. Vib. Control, 11, 67-88. https://doi.org/10.1177/10775463045046028
  13. Mani, G., Quinn, D.D. and Kasaeda, M. (2006), "Active health monitoring in a rotating cracked shaft using active magnetic bearings as force actuators", J. Sound Vib., 294, 454-465. https://doi.org/10.1016/j.jsv.2005.11.020
  14. Matsuzaki, Y., Ikeda, T., Nae, A. and Sasaki, T. (2000), "Electromagnetic forces for a new vibration control system: experimental verification", Smart Mater. Struct., 9, 127-131. https://doi.org/10.1088/0964-1726/9/2/301
  15. Schweitzer, G., Bleuler, H. and Traxler, A. (2003), Active magnetic bearings - basics, properties and applications, pdf Hochschulverlag AG, ETH, Zurich.
  16. Simoes, R.C., Der Hagopian, J., Mahfoud, J. and Steffen Jr, V. (2007), "Modal active vibration control of a rotor using piezoelectric stack actuators", J. Vib. Control, 13(1), 45-64. https://doi.org/10.1177/1077546306070227

Cited by

  1. Optimization of unbalance distribution in rotating machinery with localized non linearity vol.72, 2014, https://doi.org/10.1016/j.mechmachtheory.2013.09.012
  2. Experimental investigations on the effectiveness of electromagnetic actuator as sensor vol.14, pp.4, 2013, https://doi.org/10.1051/meca/2013067
  3. Numerical and Experimental Modal Control of Flexible Rotor Using Electromagnetic Actuator vol.2014, 2014, https://doi.org/10.1155/2014/361418
  4. Effect of high-frequency AC electromagnetic actuation on the dynamic of an excited cantilever beam vol.16, 2014, https://doi.org/10.1051/matecconf/20141608002
  5. Control of the breathing mechanism of a cracked rotor by using electro-magnetic actuator: numerical study vol.9, pp.5, 2012, https://doi.org/10.1590/S1679-78252012000500004
  6. Effect of electromagnetic actuations on the dynamics of a harmonically excited cantilever beam vol.46, pp.6, 2011, https://doi.org/10.1016/j.ijnonlinmec.2011.03.001
  7. Robust control in rotating machinery using linear matrix inequalities vol.22, pp.17, 2016, https://doi.org/10.1177/1077546314565686
  8. Vibration Reduction Performance of an Active Damping Control System for a Scaled System of a Cable-Stayed Bridge vol.15, pp.05, 2015, https://doi.org/10.1142/S0219455414500771
  9. Oil Whip Elimination Using Fuzzy Logic Controller vol.138, pp.6, 2015, https://doi.org/10.1115/1.4031759
  10. Investigations on critical speed suppressing by using electromagnetic actuators vol.9, pp.4, 2010, https://doi.org/10.12989/sss.2012.9.4.303
  11. Effect of Electromagnetic Actuation on Contact Loss in a Hertzian Contact Oscillator vol.10, pp.6, 2015, https://doi.org/10.1115/1.4028838