DOI QR코드

DOI QR Code

Finite element analysis of CFT columns subjected to pure bending moment

  • Hu, H.T. (Department of Civil Engineering and Sustainable Environment Research Center National Cheng Kung University) ;
  • Su, F.C. (Department of Civil Engineering and Sustainable Environment Research Center National Cheng Kung University) ;
  • Elchalakani, M. (School of Architectural, Civil and Mechanical Engineering, Victoria University Footscray Park Campus)
  • Received : 2009.07.07
  • Accepted : 2010.08.19
  • Published : 2010.09.25

Abstract

Proper material constitutive models for concrete-filled tube (CFT) columns of circular cross section and subjected to pure bending moment are proposed. These material models are implemented into the Abaqus finite element program and verified against experimental data. It has been shown that the steel tube does not provide good confining effect to the concrete core when the CFT columns is subjected to pure bending moment. When the diameter-to-thickness ratio of the CFT columns is small, the behavior of the CFT column is the same as the steel tube without a concrete core.

Keywords

Acknowledgement

Supported by : National Science Council

References

  1. Abaqus, Inc (2009), Abaqus analysis user's manuals and example problems manuals, Version 6.9, Providence, Rhode Island.
  2. ACI Committee 318 (2005), Building code requirements for structural concrete and commentary (ACI 318-05), American Concrete Institute, Detroit, Michigan.
  3. Architectural Institute of Japan (1991), AIJ standards for structural calculation of steel reinforced concrete structures, Tokyo.
  4. ASCE Task Committee on Concrete and Masonry Structure (1982), State of the art report on finite element analysis of reinforced concrete, ASCE, New York.
  5. Bradford, M.A. (1996), "Design strength of slender concrete-filled rectangular steel tubes", ACI Struct. J., 93(2), 229-235.
  6. Boyd, F.P., Cofer, W.F. and McLean, D. (1995), "Seismic performance of steel-encased concrete column under flexural loading", ACI Struct. J., 92(3), 355-365.
  7. Elchalakani, M., Zhao, X.L. and Grzebieta, R.H. (2001), "Concrete-filled circular steel tube subjected to pure bending", J. Constr. Steel. Res., 57(11), 1141-1168. https://doi.org/10.1016/S0143-974X(01)00035-9
  8. Elremaily, A. and Azizinamini, A. (2002), "Behavior and strength of circular concrete-filled tube columns", J. Constr. Steel. Res., 58(12), 1567-1591. https://doi.org/10.1016/S0143-974X(02)00005-6
  9. Furlong, R.W. (1963), "Strength of steel-encased concrete beam-columns", J. Struct. Div-ASCE, 93(5), 113-124.
  10. Ge, H.B. and Usami, T. (1992), "Strength of concrete-filled thin-walled steel box columns: experiment", J. Struct. Eng-ASCE, 118(1), 3036-3054. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3036)
  11. Hu, H.T., Huang, C.S. and Chen, Z.L. (2005), "Finite element analysis of CFT columns subjected to combined axial force and bending moment", J. Constr. Steel. Res., 61(12), 1692-1712. https://doi.org/10.1016/j.jcsr.2005.05.002
  12. Hu, H.T., Huang, C.S., Wu, M.H. and Wu, Y.M. (2003), "Nonlinear analysis of axially loaded CFT columns with confinement effect", J. Struct. Eng-ASCE, 129(10), 1322-1329. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322)
  13. Hu, H.T. and Schnobrich, W.C. (1989), "Constitutive modelling of concrete by using nonassociated plasticity", J. Mater. Civil. Eng-ASCE, 1(4), 199-216. https://doi.org/10.1061/(ASCE)0899-1561(1989)1:4(199)
  14. Lu, F.W., Li, S.P. and Sun, G. (2007), "A study on the behavior of eccentrically compressed square concrete-filled steel tube columns", J. Constr. Steel. Res., 63(7), 941-948. https://doi.org/10.1016/j.jcsr.2006.09.003
  15. Knowles, R.B. and Park, R. (1969), "Strength of concrete filled steel tubular columns", J. Struct. Div-ASCE, 95(12), 2565-2587.
  16. Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng-ASCE, 114(8), 1804-1823. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  17. Office for Official Publications of the European Communities (1994), EN 1994 - Eurocode 4 - Design of composite steel and concrete structures, Luxembourg.
  18. Richart, F.E., Brandtzaeg, A. and Brown, R.L. (1928), A study of the failure of concrete under combined compressive stresses, Bulletin 185, University of Illinois Engineering Experimental Station, Champaign, Illinois.
  19. Roeder, C.W., Cameron, B. and Brown, C.B. (1999), "Composite action in concrete filled tubes", J. Struct. Eng-ASCE, 125(5), 477-484. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(477)
  20. Saenz, L.P. (1964), Discussion of "Equation for the stress-strain curve of concrete" by Desayi, P. and Krishnan, S., ACI J., 61, 1229-1235.
  21. Schneider, S.P. (1998), "Axial loaded concrete-filled steel tubes", J. Struct. Eng-ASCE, 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
  22. Shams, M. and Saadeghvaziri, M.A. (1997), "State of the art of concrete-filled steel tubular columns", ACI Struct. J., 94(5), 558-571.
  23. Schneider, S.P. (1998), "Axial loaded concrete-filled steel tubes", J. Struct. Eng-ASCE, 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
  24. Su, F.C. (2004), Numerical analysis of concrete filled tubes subjected to pure bending, M.S. thesis (in chinese), Department of Civil Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C.
  25. Uy, B. (2000), "Strength of concrete filled steel box columns incorporating local buckling", J. Struct. Eng-ASCE, 126(3), 341-352. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(341)
  26. Wang, C.K. and Salmon, C.G. (2006), Reinforced Concrete Design, 7th Edition, John Wiley and Sons.
  27. Zhang,W. and Shahrooz, B.M. (1999), "Comparison between ACI and AISC for concrete-filled tubular columns", J. Struct. Eng-ASCE, 125(11), 1213-1223. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:11(1213)

Cited by

  1. Finite element analysis of concrete-filled steel tube (CFST) columns with circular sections under eccentric load vol.148, 2017, https://doi.org/10.1016/j.engstruct.2017.06.064
  2. Finite element analysis on the structural behaviour of square CFST beams vol.210, 2017, https://doi.org/10.1088/1757-899X/210/1/012018
  3. Simulation of the damping effect of a high-rise CRST frame structure vol.9, pp.4, 2012, https://doi.org/10.12989/cac.2012.9.4.245
  4. Behavior of circular CFT columns subject to axial force and bending moment vol.14, pp.2, 2013, https://doi.org/10.12989/scs.2013.14.2.173
  5. Analytical evaluation of a modular CFT bridge pier according to directivity vol.20, pp.6, 2016, https://doi.org/10.12989/scs.2016.20.6.1193
  6. Uni-axial behaviour of normal-strength CFDST columns with external steel rings vol.13, pp.6, 2012, https://doi.org/10.12989/scs.2012.13.6.587
  7. Cyclic and static behaviors of CFT modular bridge pier with enhanced bracings vol.20, pp.6, 2016, https://doi.org/10.12989/scs.2016.20.6.1221
  8. Efficiency on uni-axial compressive strength improvement by using externally confined concrete-filled steel tube columns vol.20, pp.2, 2013, https://doi.org/10.1080/1023697X.2013.794572
  9. Uni-axial behaviour of normal-strength concrete-filled-steel-tube columns with external confinement vol.3, pp.6, 2012, https://doi.org/10.12989/eas.2012.3.6.889
  10. Numerical study of internally reinforced circular CFT column-to-foundation connection according to design variables vol.23, pp.4, 2010, https://doi.org/10.12989/scs.2017.23.4.445
  11. 개선된 부착슬립 모델을 적용한 부분 CFST 기둥의 수치해석 vol.33, pp.3, 2010, https://doi.org/10.7734/coseik.2020.33.3.153