DOI QR코드

DOI QR Code

Dynamic stability of a metal foam rectangular plate

  • Debowski, D. (Institute of Mechanical Engineering and Machine Operation, University of Zielona Gora) ;
  • Magnucki, K. (Institute of Applied Mechanics, Poznan University of Technology) ;
  • Malinowski, M. (Institute of Mechanical Engineering and Machine Operation, University of Zielona Gora)
  • 투고 : 2009.07.15
  • 심사 : 2010.02.24
  • 발행 : 2010.03.25

초록

The subject of the paper is an isotropic metal foam rectangular plate. Mechanical properties of metal foam vary continuously through plate of the thickness. A nonlinear hypothesis of deformation of plane cross section is formulated. The system of partial differential equations of the plate motion is derived on the basis of the Hamilton's principle. The system of equations is analytically solved by the Bubnov-Galerkin method. Numerical investigations of dynamic stability for family rectangular plates with respect analytical solution are performed. Moreover, FEM analysis and theirs comparison with results of numerical-analytical calculations are presented in figures.

키워드

참고문헌

  1. Abramovich, H. and Grunwald, A. (1995), "Stability of axially impacted composite plates", Compos. Struct., 32, 151-158. https://doi.org/10.1016/0263-8223(95)00079-8
  2. Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W. and Wadley, H.N.G. (2000), Metal foams: a design guide, Butterworth-Heinemann, Boston.
  3. Bakker, M.C.M., Rosmanit, M., Hofmeyer, H. (2007), "Elastic post-buckling analysis of compressed plates using a two-strip model", Thin Wall. Struct., 45, 502-516. https://doi.org/10.1016/j.tws.2007.04.006
  4. Banhart, J. (2001), "Manufacture, characterization and application of cellular metals and metal foams", Prog. Mater. Sci., 46, 559-632. https://doi.org/10.1016/S0079-6425(00)00002-5
  5. Bart-Smith, H., Hutchinson, J.W. and Evans, A.G. (2001), "Measurement and analysis of the structural performance of cellular metal sandwich construction", Int. J. Mech. Sci., 43, 1945-1963. https://doi.org/10.1016/S0020-7403(00)00070-9
  6. Carrera, E. (2000), "An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates", Compos. Struct., 50, 183-198. https://doi.org/10.1016/S0263-8223(00)00099-4
  7. Carrera, E. (2001), "Developments, ideas, and evaluations based upon Reissner's mixed variational theorem in the modeling of multilayred plates and shells", Appl. Mech. Rev., 54, 301-329. https://doi.org/10.1115/1.1385512
  8. Carrera, E. (2003), "Historical review of Zig-Zag theories for multilayred plates and shells", Appl. Mech. Rev., 56, 287-308. https://doi.org/10.1115/1.1557614
  9. Carrera, E., Brischetto, S. and Robaldo, A. (2008), "Variable kinematic model for the analysis of functionally graded material plate", AIAA Journal., 46(1), 194-203. https://doi.org/10.2514/1.32490
  10. Choi, J.B. and Lakes, R.S. (1995), "Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson's ratio", Int. J. Mech. Sci., 37(1), 51-59. https://doi.org/10.1016/0020-7403(94)00047-N
  11. Debowski, D. and Magnucki, K. (2006), "Dynamic stability of a porous rectangular plate", PAMM, 6(SPI), 215- 216. https://doi.org/10.1002/pamm.200610088
  12. Elements Reference, ANSYS 5.4, Ansys Inc., 1994.
  13. Eshmatov, B.K. (2007), "Nonlinear vibrations and dynamic stability of viscoelastic orthotropic rectangular plates", J. Sound. Vib., 300, 709-726. https://doi.org/10.1016/j.jsv.2006.08.024
  14. Evans, A.G., Hutchinson, J.W. and Ashby M.F. (1999), "Multifunctionality of cellular metal system", Prog. Mater. Sci., 43, 171-221.
  15. Fares, M.E. and Elmarghany, M.K. (2008), "A refined zig-zag nonlinear first order shear deformation theory of composite laminated plates", Compos. Struct., 82, 71-83. https://doi.org/10.1016/j.compstruct.2006.12.007
  16. Kovacik, J. (1999), "Correlation between Young's modulus and porosity in porous materials", J. Mater. Sci. Lett., 18, 1007-1010. https://doi.org/10.1023/A:1006669914946
  17. Kovacik, J. (2001), "Correlation between shear modulus and porosity in porous materials", J. Mater. Sci. Lett., 20, 1953-1955. https://doi.org/10.1023/A:1013186702962
  18. Magnucki, K. and Stasiewicz, P. (2004a), "Elastic bending of an isotropic porous beam", Int. J. Appl. Mech. Eng., 9(2), 351-360.
  19. Magnucki, K. and Stasiewicz, P. (2004b), "Elastic buckling of a porous beam", J. Theor. Appl. Mech., 42(4), 859-868.
  20. Malinowski, M. and Magnucki,K. (2005), "Deflection of an isotropic porous cylindrical panel", Proceeding of the 8th SSTA conference, Eds.Pietraszkiewicz,W. and Szymczak,C. Taylor & Francis ; London, New York, Philadelphia, Singapore., 143-147.
  21. Magnucki, K., Malinowski, M., Kasprzak, J. (2006), "Bending and buckling of rectangular porous plate", Steel. Compos. Struct., 6(4), 319-333. https://doi.org/10.12989/scs.2006.6.4.319
  22. Mielniczuk, J. and Malinowski, M. (2005), "Models of porous materials for design of construction shell elements", Pojazdy Szynowe, 3, 15-21, (in Polish).
  23. Mielniczuk, J., Malinowski, M., Kuligowski, P. (2006), "Porous shell elements for wagon roof of railway vehicles", Pojazdy Szynowe, 2,1-5, (in Polish).
  24. Qatu, M.S. (2004), Vibration of laminated shells and plates, Elsevier, Amsterdam.
  25. Ramamurty, U. and Paul, A. (2004), "Variability in mechanical properties of metal foam", Acta Mater., 52, 869- 876. https://doi.org/10.1016/j.actamat.2003.10.021
  26. Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47, 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
  27. Sahu, S.K. and Datta, P.K. (2007), "Research advances in the dynamic stability behavior of plates and shells: 1987-2005 - Part 1: Conservative systems", Applied Mechanics Reviews, 60, 65-75. https://doi.org/10.1115/1.2515580
  28. Structural Analysis Guide, ANSYS 5.4, Ansys Inc., 1994.
  29. Szcze niak,W. (2000), Selected problems of dynamic of plates, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa (in Polish).
  30. Wang, C.M., Reddy, J.N., Lee, K.H. (2000), Shear deformable beams and plates, S. Elsevier Sciences., Amsterdam, Lausanne, New York, Oxford, Singapore, Tokyo.
  31. Yang, J., Liew, K.M., and Kitipornchai, S. (2006), "Imperfection sensitivity of the post-buckling behavior of higher-order deformable graded plates", Int. J. Solids. Struct., 43, 5247-5266. https://doi.org/10.1016/j.ijsolstr.2005.06.061
  32. Zhang, T., Liu, T. and Luo, J. (2004), "Nonlinear dynamic buckling of stiffened plates under in-plane impact load", J. Zhejiang University Science, 5(5), 609-617. https://doi.org/10.1631/jzus.2004.0609

피인용 문헌

  1. Elastic buckling of a sandwich beam with variable mechanical properties of the core vol.87, 2015, https://doi.org/10.1016/j.tws.2014.11.014
  2. Mathematical modeling for dynamic stability of sandwich beam with variable mechanical properties of core vol.37, pp.10, 2016, https://doi.org/10.1007/s10483-016-2137-9
  3. Analytical and finite element modelling of long plate mode jumping behaviour vol.73, 2013, https://doi.org/10.1016/j.tws.2013.06.017
  4. Three-point bending of a short beam with symmetrically varying mechanical properties vol.179, 2017, https://doi.org/10.1016/j.compstruct.2017.07.040
  5. Weak form quadrature element analysis on nonlinear bifurcation and post-buckling of cylindrical composite laminates vol.188, 2018, https://doi.org/10.1016/j.compstruct.2018.01.007
  6. Thermal buckling analysis of porous circular plate with piezoelectric actuators based on first order shear deformation theory vol.83, 2014, https://doi.org/10.1016/j.ijmecsci.2014.03.024
  7. Examining wave propagation characteristics in metal foam beams: Euler–Bernoulli and Timoshenko models vol.40, pp.12, 2018, https://doi.org/10.1007/s40430-018-1491-z
  8. Nonlinear dynamic buckling of functionally graded porous beams pp.1537-6532, 2021, https://doi.org/10.1080/15376494.2019.1567888
  9. Ant colony optimization for dynamic stability of laminated composite plates vol.25, pp.1, 2010, https://doi.org/10.12989/scs.2017.25.1.105
  10. Pore pressure and porosity effects on bending and thermal postbuckling behavior of FG saturated porous circular plates vol.42, pp.9, 2010, https://doi.org/10.1080/01495739.2019.1614502
  11. Vibration analysis of porous metal foam shells rested on an elastic substrate vol.54, pp.3, 2010, https://doi.org/10.1177/0309324719852555
  12. Mechanical stability of metal foam cylindrical shells with various porosity distributions vol.27, pp.4, 2010, https://doi.org/10.1080/15376494.2018.1472338
  13. Axisymmetric bending of a circular plate with symmetrically varying mechanical properties under a concentrated force vol.34, pp.6, 2010, https://doi.org/10.12989/scs.2020.34.6.795
  14. Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: internal resonances vol.104, pp.3, 2010, https://doi.org/10.1007/s11071-021-06401-7
  15. Dynamic Instability Response of Soft Core Sandwich Plates Based on Higher-Order Plate Theory vol.21, pp.9, 2010, https://doi.org/10.1142/s0219455421501182