References
- Abramovich, H. and Grunwald, A. (1995), "Stability of axially impacted composite plates", Compos. Struct., 32, 151-158. https://doi.org/10.1016/0263-8223(95)00079-8
- Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W. and Wadley, H.N.G. (2000), Metal foams: a design guide, Butterworth-Heinemann, Boston.
- Bakker, M.C.M., Rosmanit, M., Hofmeyer, H. (2007), "Elastic post-buckling analysis of compressed plates using a two-strip model", Thin Wall. Struct., 45, 502-516. https://doi.org/10.1016/j.tws.2007.04.006
- Banhart, J. (2001), "Manufacture, characterization and application of cellular metals and metal foams", Prog. Mater. Sci., 46, 559-632. https://doi.org/10.1016/S0079-6425(00)00002-5
- Bart-Smith, H., Hutchinson, J.W. and Evans, A.G. (2001), "Measurement and analysis of the structural performance of cellular metal sandwich construction", Int. J. Mech. Sci., 43, 1945-1963. https://doi.org/10.1016/S0020-7403(00)00070-9
- Carrera, E. (2000), "An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates", Compos. Struct., 50, 183-198. https://doi.org/10.1016/S0263-8223(00)00099-4
- Carrera, E. (2001), "Developments, ideas, and evaluations based upon Reissner's mixed variational theorem in the modeling of multilayred plates and shells", Appl. Mech. Rev., 54, 301-329. https://doi.org/10.1115/1.1385512
- Carrera, E. (2003), "Historical review of Zig-Zag theories for multilayred plates and shells", Appl. Mech. Rev., 56, 287-308. https://doi.org/10.1115/1.1557614
- Carrera, E., Brischetto, S. and Robaldo, A. (2008), "Variable kinematic model for the analysis of functionally graded material plate", AIAA Journal., 46(1), 194-203. https://doi.org/10.2514/1.32490
- Choi, J.B. and Lakes, R.S. (1995), "Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson's ratio", Int. J. Mech. Sci., 37(1), 51-59. https://doi.org/10.1016/0020-7403(94)00047-N
- Debowski, D. and Magnucki, K. (2006), "Dynamic stability of a porous rectangular plate", PAMM, 6(SPI), 215- 216. https://doi.org/10.1002/pamm.200610088
- Elements Reference, ANSYS 5.4, Ansys Inc., 1994.
- Eshmatov, B.K. (2007), "Nonlinear vibrations and dynamic stability of viscoelastic orthotropic rectangular plates", J. Sound. Vib., 300, 709-726. https://doi.org/10.1016/j.jsv.2006.08.024
- Evans, A.G., Hutchinson, J.W. and Ashby M.F. (1999), "Multifunctionality of cellular metal system", Prog. Mater. Sci., 43, 171-221.
- Fares, M.E. and Elmarghany, M.K. (2008), "A refined zig-zag nonlinear first order shear deformation theory of composite laminated plates", Compos. Struct., 82, 71-83. https://doi.org/10.1016/j.compstruct.2006.12.007
- Kovacik, J. (1999), "Correlation between Young's modulus and porosity in porous materials", J. Mater. Sci. Lett., 18, 1007-1010. https://doi.org/10.1023/A:1006669914946
- Kovacik, J. (2001), "Correlation between shear modulus and porosity in porous materials", J. Mater. Sci. Lett., 20, 1953-1955. https://doi.org/10.1023/A:1013186702962
- Magnucki, K. and Stasiewicz, P. (2004a), "Elastic bending of an isotropic porous beam", Int. J. Appl. Mech. Eng., 9(2), 351-360.
- Magnucki, K. and Stasiewicz, P. (2004b), "Elastic buckling of a porous beam", J. Theor. Appl. Mech., 42(4), 859-868.
- Malinowski, M. and Magnucki,K. (2005), "Deflection of an isotropic porous cylindrical panel", Proceeding of the 8th SSTA conference, Eds.Pietraszkiewicz,W. and Szymczak,C. Taylor & Francis ; London, New York, Philadelphia, Singapore., 143-147.
- Magnucki, K., Malinowski, M., Kasprzak, J. (2006), "Bending and buckling of rectangular porous plate", Steel. Compos. Struct., 6(4), 319-333. https://doi.org/10.12989/scs.2006.6.4.319
- Mielniczuk, J. and Malinowski, M. (2005), "Models of porous materials for design of construction shell elements", Pojazdy Szynowe, 3, 15-21, (in Polish).
- Mielniczuk, J., Malinowski, M., Kuligowski, P. (2006), "Porous shell elements for wagon roof of railway vehicles", Pojazdy Szynowe, 2,1-5, (in Polish).
- Qatu, M.S. (2004), Vibration of laminated shells and plates, Elsevier, Amsterdam.
- Ramamurty, U. and Paul, A. (2004), "Variability in mechanical properties of metal foam", Acta Mater., 52, 869- 876. https://doi.org/10.1016/j.actamat.2003.10.021
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47, 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
- Sahu, S.K. and Datta, P.K. (2007), "Research advances in the dynamic stability behavior of plates and shells: 1987-2005 - Part 1: Conservative systems", Applied Mechanics Reviews, 60, 65-75. https://doi.org/10.1115/1.2515580
- Structural Analysis Guide, ANSYS 5.4, Ansys Inc., 1994.
- Szcze niak,W. (2000), Selected problems of dynamic of plates, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa (in Polish).
- Wang, C.M., Reddy, J.N., Lee, K.H. (2000), Shear deformable beams and plates, S. Elsevier Sciences., Amsterdam, Lausanne, New York, Oxford, Singapore, Tokyo.
- Yang, J., Liew, K.M., and Kitipornchai, S. (2006), "Imperfection sensitivity of the post-buckling behavior of higher-order deformable graded plates", Int. J. Solids. Struct., 43, 5247-5266. https://doi.org/10.1016/j.ijsolstr.2005.06.061
- Zhang, T., Liu, T. and Luo, J. (2004), "Nonlinear dynamic buckling of stiffened plates under in-plane impact load", J. Zhejiang University Science, 5(5), 609-617. https://doi.org/10.1631/jzus.2004.0609
Cited by
- Elastic buckling of a sandwich beam with variable mechanical properties of the core vol.87, 2015, https://doi.org/10.1016/j.tws.2014.11.014
- Mathematical modeling for dynamic stability of sandwich beam with variable mechanical properties of core vol.37, pp.10, 2016, https://doi.org/10.1007/s10483-016-2137-9
- Analytical and finite element modelling of long plate mode jumping behaviour vol.73, 2013, https://doi.org/10.1016/j.tws.2013.06.017
- Three-point bending of a short beam with symmetrically varying mechanical properties vol.179, 2017, https://doi.org/10.1016/j.compstruct.2017.07.040
- Weak form quadrature element analysis on nonlinear bifurcation and post-buckling of cylindrical composite laminates vol.188, 2018, https://doi.org/10.1016/j.compstruct.2018.01.007
- Thermal buckling analysis of porous circular plate with piezoelectric actuators based on first order shear deformation theory vol.83, 2014, https://doi.org/10.1016/j.ijmecsci.2014.03.024
- Examining wave propagation characteristics in metal foam beams: Euler–Bernoulli and Timoshenko models vol.40, pp.12, 2018, https://doi.org/10.1007/s40430-018-1491-z
- Nonlinear dynamic buckling of functionally graded porous beams pp.1537-6532, 2021, https://doi.org/10.1080/15376494.2019.1567888
- Ant colony optimization for dynamic stability of laminated composite plates vol.25, pp.1, 2010, https://doi.org/10.12989/scs.2017.25.1.105
- Pore pressure and porosity effects on bending and thermal postbuckling behavior of FG saturated porous circular plates vol.42, pp.9, 2010, https://doi.org/10.1080/01495739.2019.1614502
- Vibration analysis of porous metal foam shells rested on an elastic substrate vol.54, pp.3, 2010, https://doi.org/10.1177/0309324719852555
- Mechanical stability of metal foam cylindrical shells with various porosity distributions vol.27, pp.4, 2010, https://doi.org/10.1080/15376494.2018.1472338
- Axisymmetric bending of a circular plate with symmetrically varying mechanical properties under a concentrated force vol.34, pp.6, 2010, https://doi.org/10.12989/scs.2020.34.6.795
- Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: internal resonances vol.104, pp.3, 2010, https://doi.org/10.1007/s11071-021-06401-7
- Dynamic Instability Response of Soft Core Sandwich Plates Based on Higher-Order Plate Theory vol.21, pp.9, 2010, https://doi.org/10.1142/s0219455421501182