DOI QR코드

DOI QR Code

Dialysis in parallel-flow rectangular membrane modules with external reflux for improved performance

  • Yeh, Ho-Ming (Department of Chemical and Materials Engineering, Tamkang University) ;
  • Cheng, Tung-Wen (Department of Chemical and Materials Engineering, Tamkang University) ;
  • Chen, Kuan-Hung (Department of Chemical and Materials Engineering, Tamkang University)
  • Received : 2009.05.08
  • Accepted : 2010.03.11
  • Published : 2010.04.25

Abstract

The effect of external recycle on the performance of dialysis in countercurrent-flow rectangular membrane modules was investigated both theoretically and experimentally. Theoretical analysis of mass transfer in parallel-flow device with and without recycle is analogous to heat transfer in parallel-flow heat exchangers. Experiments were carried out with the use of a microporous membrane to dialyze urea aqueous solution by pure water. In contrast to a device with recycle, improvement in mass transfer is achievable if parallel-flow dialysis is operated in a device of same size with recycle which provides the increase of fluid velocity, resulting in reduction of mass-transfer resistance, especially for rather low feed volume rate.

Keywords

References

  1. Blatt, W. F., David, A., Michaels, A. S. and Nelson, L. (1970), "Solute polarization and cake formation in membrane ultrafiltration: causes, consequences, and control techniques," Membrane Sci. Tech., 47, J. E. Filnn Ed., Plenum Press, New York.
  2. Bowman, R. A., Mueller, A. C. and Nagle, W. M. (1940), "Mean temperature difference in design," Trans. Am. Mech. Eng., 62, 283-294.
  3. Cheng, T. W. and Su, C. H. (2002), "Influence of flow arrangement on the performance of membrane mass exchangers," J. Chin. Inst. Chem. Eng., 33(4), 389-396.
  4. Cooney, D. O., Kim, S. S. and Davis, E. J. (1974), "Analysis of mass transfer in hemodialyzers of laminar blood flow and homogeneous dialysate," Chem. Eng. Sci., 29(8), 1731-1738. https://doi.org/10.1016/0009-2509(74)87031-4
  5. Galach, M., Ciechanowska, A., Sabalinska, S., Waniewski, J., Wojcicki J. and Werynski, A. (2003), "Impact of convective transport on dialyzer clearance," J. Artif. Organs, 6(1), 42-48. https://doi.org/10.1007/s100470300007
  6. Grimsurd, L. and Babb, A. L. (1966), "Velocity and concentration profiles for laminar flow of newtonian fluid in a dialyzer," Chem. Eng. Prog. Ser., 62(66), 20-31.
  7. Jaffrin, M. Y., Gupta, B. B. and Malbrancq, J. M. (1981), "One-dimensional model of simultaneous hemodialysis and ultrafiltration with highly permeable membrane," J. Biomech. Eng., 103(4), 261-266. https://doi.org/10.1115/1.3138290
  8. Jakob, M. (1957), Heat Transfer, 2, 230-260, Wiley, New York.
  9. Kessler, S. B. and Klein, E. (1992), "Part IV: Dialysis, Chapter 12: Theory," Membrane Handbook, 167-185, W. S. W. Ho and K. K. Sirkar, Ed. Chapman and Hall, New York.
  10. Kiani, A., Bhave, R. R. and Sirkar, K. K. (1984), "Solvent extraction with immobilized interfaces in microporous membrane," J. Membrane Sci., 20(2), 125-145. https://doi.org/10.1016/S0376-7388(00)81328-9
  11. Kobuchi, Y., Motomura, H., Noma, Y. and Hanada, F. (1986), "Application of ion exchange membranes to the recovery of acids by diffusion dialysis," J. Membrane Sci., 27(2), 173-179. https://doi.org/10.1016/S0376-7388(00)82054-2
  12. Legallais, C., Catapano, G., van Harten, P. and Baurmeister, U. (2000), "A Theoretical model to predict the in vitro performance of hemodiafilters," J. Membrane Sci., 168(1-2), 3-15. https://doi.org/10.1016/S0376-7388(99)00297-5
  13. Michaels, A. S. (1966), "Operating parameters and performance criteria for hemodialyzers and other membraneseparation devices," Trans. Amer. Soc. Artif. Int. Organs, 12, 387-392.
  14. Mulder, M. (1996), Basic Principle of Membrane Technology, 2nd ed., 358, Kluwer, Dordrecht, The Netherlands.
  15. Narebska, A. and Warszaski, A. (1994), "Diffusion dialysis transport phenomena by irreversible thermodynamics," J. Membrane Sci., 88(2-3), 167-175. https://doi.org/10.1016/0376-7388(94)87004-7
  16. Oh, S. J., Moon, S. H. and Davis, T. (2000), "Effects of metal ions on diffusion dialysis of inorganic acids," J. Membrane Sci., 169(1), 95-105. https://doi.org/10.1016/S0376-7388(99)00333-6
  17. Palaty, Z. and Zakova, A. (1996), "Transport of sulfuric acid through anion-exchange membrane NEOSEPTAAFN," J. Membrane Sci., 119(2), 183-190. https://doi.org/10.1016/0376-7388(96)00122-6
  18. Palaty, Z., Zakova, A. and Dolecek, P. (2000), "Modeling the transport of Cl− ions through the anion exchange membrane NEOSEPTA-AFN; systems HCl/membrane/$H_{2}O$ and HCl-$FeCl_{3}$/membrane/$H_{2}O$," J. Membrane Sci., 165(2), 273-249. https://doi.org/10.1016/S0376-7388(99)00237-9
  19. Palaty, Z., Zakova, A. and Prchal, P. (2007), "Continuous dialysis of carboxylic acids. permeability of neosepta- AMH membrane," Desalination, 216(1-3), 345-355. https://doi.org/10.1016/j.desal.2006.09.029
  20. Tu, J. W., Ho, C. D. and Yeh, H. M. (2006), "The analytical and experimental studies of the parallel-plate concurrent dialysis system coupled with ultrafiltration," J. Membrane Sci., 281(1-2), 676-684. https://doi.org/10.1016/j.memsci.2006.04.038
  21. Waniewski, J. (2006), "Mathematical modeling of fluid and solute transport in hemodialysis and peritoneal dialysis," J. Membrane Sci., 274(1-2), 24-37. https://doi.org/10.1016/j.memsci.2005.11.038
  22. Yeh, H. M., Cheng, T. W. and Chen, Y. J. (1997), "Analysis of dialysis coupled with ultrafiltration in cross-flow membrane modules," J. Membrane Sci., 134(2), 151-162. https://doi.org/10.1016/S0376-7388(97)00127-0
  23. Yeh, H. M., Peng, Y. Y. and Chen, Y. K. (1999), "Solvent extraction through a double-pass parallel-plate membrane channel with recycle," J. Membrane Sci., 163(2), 177-192. https://doi.org/10.1016/S0376-7388(99)00166-0
  24. Yeh, H. M., Cheng, T. W. and Chen, Y. J. (2000), "Mass transfer for dialysis with ultrafiltration flux declined in cross-flow membrane modules," J. Chem. Eng. JPN, 33(3), 440-448. https://doi.org/10.1252/jcej.33.440
  25. Yeh, H. M. and Chang, Y. H. (2005), "Mass transfer for dialysis through parallel-flow double-pass rectangular membrane modules," J. Membrane Sci., 260(1-2), 1-9. https://doi.org/10.1016/j.memsci.2005.03.003

Cited by

  1. Dialysis in double-pass cross-flow rectangular membrane modules with external recycle for improved performance vol.2, pp.2, 2011, https://doi.org/10.12989/mwt.2011.2.2.075