DOI QR코드

DOI QR Code

Nanofiltration of multi-ionic solutions: prediction of ions transport using the SEDE model

  • Cavaco Morao, A.I. (Instituto Superior Tecnico, Department of Chemical and Biological Engineering) ;
  • Szymczyk, A. (Universite Europeenne de Bretagne) ;
  • Fievet, P. (Institut UTINAM, UMR CNRS 6213, Universite de Franche-Comte) ;
  • Brites Alves, A.M. (Instituto Superior Tecnico, Department of Chemical and Biological Engineering)
  • Received : 2009.09.24
  • Accepted : 2010.02.22
  • Published : 2010.04.25

Abstract

This work focuses on the application of nanofiltration (NF) to the concentration of a pharmaceutical product, Clavulanate ($CA^-$), from clarified fermentation broths, which show a complex composition with six main identified ions ($K^+$, $Cl^-$, ${NH_4}^+$, $H_2{PO_4}^-$, ${SO_4}^{2-}$ and $CA^-$), glucose and glycerol. The solutes transport through the NF membrane pores was investigated using the SEDE (Steric, Electric and Dielectric Exclusion) model. This model was applied to predict the rejection rates of the initial feed solution and the final concentrated solution (10-fold concentrated solution). The best results were achieved with a single fitted parameter, ${\varepsilon}_p$ (the dielectric constant of the solution inside pores) and considering that the membrane selectivity is governed by steric, electric (Donnan) and Born dielectric exclusion mechanisms. While the predicted intrinsic rejections of solutions comprising up to six ions and uncharged solutes were in good agreement with the experimental values, the deviations were much larger for the 10-fold concentrated solution.

Keywords

References

  1. Atkins, P.W. (1994), Physical chemistry, 6th edition, University Press, Oxford.
  2. Bandini, S. and Vezzani, D. (2003), "Nanofiltration modeling: the role of dielectric exclusion in membrane characterization", Chem. Eng. Sci., 58, 75-86.
  3. Bandini, S. (2005), "Modelling the mechanism of charge formation in NF membranes: Theory and application", J. Membrane Sci., 264 (2005), 75-86. https://doi.org/10.1016/j.memsci.2005.03.055
  4. Bargeman, G., Vollenbroek, J.M., Straatsma, J., Schröen, C.G.P.H. and Boom, R.M. (2005), "Nanofiltration of multicomponent feeds. Interactions between neutral and charged components and their effect on retention", J. Membrane Sci., 247, 11-20. https://doi.org/10.1016/j.memsci.2004.05.022
  5. Bird, A.E., Bellis, J.M. and Gasson, B.C. (1982), "Spectrophotometric assay of clavulanic acid by reaction with imidazole", Analyst, 107, 1241-1245. https://doi.org/10.1039/an9820701241
  6. Bouchoux, A., Roux-de Balmann, H. and Lutin, F. (2005), "Nanofiltration of glucose and sodium lactate solutions. Variations of retention between single and mixed solute solutions", J. Membrane Sci., 258, 123-132. https://doi.org/10.1016/j.memsci.2005.03.002
  7. Bouranene, S., Szymczyk, S., Fievet, P. and Vidonne, A. (2007), "Influence of inorganic electrolytes on the retention of polyethyleneglycol by a nanofiltration ceramic membrane", J. Membrane Sci., 290, 216-221. https://doi.org/10.1016/j.memsci.2006.12.031
  8. Bowen ,W.R. and Welfoot, J.S., (2002), "Modelling of membrane nanofiltration - pore size distribution effects", Chem. Eng. Sci., 57, 1393-1407. https://doi.org/10.1016/S0009-2509(01)00412-2
  9. Bowen, W.R. and Mukhtar, H., (1996), "Characterisation and prediction of separation performance of nanofiltration membranes", J. Membrane Sci., 112, 263-274. https://doi.org/10.1016/0376-7388(95)00302-9
  10. Bruni, L. and Bandini, S. (2008), "The role of the electrolyte on the mechanism of charge formation in polyamide nanofiltration membranes", J. Membrane Sci., 308, 136-151. https://doi.org/10.1016/j.memsci.2007.09.061
  11. Capelle, N., Moulin, P., Charbit, F. and Gallo, R. (2002), "Purification of heterocyclic drug derivatives from concentrated saline solution by nanofiltration", J. Membrane Sci., 196, 125-141. https://doi.org/10.1016/S0376-7388(01)00601-9
  12. Cavaco Morão, A.I., Brites Alves, A.M. and Afonso, M.D. (2006), "Concentration of clavulanic acid broths: influence of surface charge density on NF performance", J. Membrane Sci., 281, 417-428. https://doi.org/10.1016/j.memsci.2006.04.010
  13. Cavaco Morao, A.I., Szymczyk, A., Fievet, P. and Brites Alves, A.M. (2008), "Modelling the separation by nanofiltration of a multi-ionic solution relevant to an industrial process", J. Membrane Sci., 322, 320-330. https://doi.org/10.1016/j.memsci.2008.06.003
  14. Cavaco Morao, A.I., Szymczyk, A., Fievet, P. and Brites Alves, A.M. (2008a), "Modelling the separation by nanofiltration for a multi-ionic solution: application to an industrial process", Proc. of Engineering with Membranes 2008, pp. 287, Algarve, Portugal, May 25-28.
  15. Cavaco Morao, A.I., Brites Alves, A.M. and Geraldes, V. (2008b), "Concentration polarization in a reverse osmosis/nanofiltration plate-and-frame membrane module", J. Membrane Sci., 325, 580-591. https://doi.org/10.1016/j.memsci.2008.08.030
  16. Dechadilok, P. and Deen, W.M. (2006), "Hindrance factors for diffusion and convection in pores", Ind. Eng. Chem. Res., 45, 6953-6959. https://doi.org/10.1021/ie051387n
  17. Deen, W.M. (1987), "Hindered transport of large molecules in liquid-filled pores", AICHE J. 33, 1409-1425. https://doi.org/10.1002/aic.690330902
  18. Fievet, P., Sbaï, M., Szymczyk, A. and Vidonne, A. (2003), "Determining the $\zeta$ - potential of plane membranes from tangential streaming measurements: effect of the membrane body conductance", J. Membrane Sci., 226, 227-236. https://doi.org/10.1016/j.memsci.2003.09.007
  19. Gemeay, A.H., Mansour, I.A., El-Sharkawy, R.G. and Zaki, A.B. (2005), "Preparation and characterization of plyaniline/manganese dioxide composites via oxidative polymerization: effect of acids", Eur. Polym. J., 41, 2575-2583. https://doi.org/10.1016/j.eurpolymj.2005.05.030
  20. Geraldes, V. and Afonso, M.D. (2007), "Prediction of the concentration polarization in the nanofiltration/reverse osmosis of dilute multi-ionic solutions", J. Membrane Sci., 300, 20-27. https://doi.org/10.1016/j.memsci.2007.04.025
  21. Myers, D. and Surfaces, I. (1999), Interfaces and colloids - principles and applications, 2nd edition, John Wiley and Sons, New York.
  22. Nabetani, H., Nakajima, M. and Watanabe, A. (1992), "Nakao S., Kimura, S., Prediction of the flux for the reverse osmosis of a solution containing sucrose and glucose", J. Chem. Eng. Jap., 25, 575-580. https://doi.org/10.1252/jcej.25.575
  23. Rashin, A.A. and Honig, B. (1985), " Reevaluation of the Born model of ionic hydration", J. Phys. Chem., 89, 5588-5593 https://doi.org/10.1021/j100272a006
  24. Sbaï, M., Szymczyk, A., Fievet, P., Sorin, A., Vidonne, A, Pellet-Rostaing, S., Favre-Reguillon, A. and Lemaire, M. (2003), "Influence of the membrane pore conductance on tangential streaming potential", Langmuir, 19, 8867-8871. https://doi.org/10.1021/la034966a
  25. Shäfer, A.I., Fane, A.G. and Waite, T.D. (2005), Nanofiltration - Principles and Applications, Elsevier, Oxford.
  26. Szaniawska, D. and Spencer, H.G. (1997), "Non-equilibrium thermodynamics analysis of the transport properties of formed-in-place Zr(IV) hydrous oxide-polyacrylate membranes: III. Ternary lactose-NaCl-water solutions", Desalination, 113, 1-6. https://doi.org/10.1016/S0011-9164(97)88712-7
  27. Szymczyk, A. and Fievet, P. (2005), "Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model", J. Membrane Sci., 252, 77-88. https://doi.org/10.1016/j.memsci.2004.12.002
  28. Szymczyk, A., Fatin-Rouge, N., Fievet, P., Ramseyer, C. and Vidonne, A. (2007), "Identification of dielectric effects in nanofiltration of metallic salts", J. Membrane Sci., 287, 102-110. https://doi.org/10.1016/j.memsci.2006.10.025
  29. Szymczyk, A., Fatin-Rouge, N. and Fievet, P. (2007b), "Tangential streaming potential as a tool in modeling of ion transport through nanoporous membranes", J. Colloid Interf. Sci., 309, 245-252. https://doi.org/10.1016/j.jcis.2007.02.005
  30. Szymczyk, A., Sbai, M., Fievet, P. and Vidonne, A. (2006), "Transport properties and electrokinetic characterization of an amphoteric nanofilter", Langmuir, 22, 3910-3919. https://doi.org/10.1021/la051888d
  31. Van der Bruggen, B., Manttari, M. and Nystrom, M. (2008), "Drawbacks of applying nanofiltration and how to avoid them: A review", Sep. Purf. Techn., 66, 251- 263.
  32. Wang, X.L., Zhang, C. and Ouyang, P. (2002), "The possibility of separating saccharides from a NaCl solution by using nanofiltration in diafiltration mode", J. Membrane Sci., 204, 271-281. https://doi.org/10.1016/S0376-7388(02)00050-9
  33. Yaroshchuk, A.E. (2000), "Dielectric exclusion of ions from membranes", Adv. Colloid Interf. Sci., 85, 193-230. https://doi.org/10.1016/S0001-8686(99)00021-4
  34. Yaroshchuk, A.E. and Ribitsch, V. (2002), "Role of channel wall conductance in the determination of $\zeta$- potential from electrokinetic measurements", Langmuir, 18, 2036-2038. https://doi.org/10.1021/la015557m

Cited by

  1. Water purification from pesticides by spiral wound nanofiltration membrane vol.2, pp.1, 2010, https://doi.org/10.12989/mwt.2011.2.1.051
  2. fMWNTs/GO/MnO2 nanocomposites as additives in a membrane for the removal of crystal violet vol.12, pp.5, 2021, https://doi.org/10.12989/mwt.2021.12.5.205