References
- Akbari, A., Remigy, J.C. and Aptel, P. (2002), "Treatment of textile dye effluent using a polyamide-based nanofiltration membrane", Chem. Eng. Process., 41, 601-609. https://doi.org/10.1016/S0255-2701(01)00181-7
- Alinsafi, A., Khemis, M., Pons, M.N., Leclerc, J.P., Yaacoubi, A., Benhammou, A. and Nejmeddine, A. (2005), "Electro-coagulation of reactive textile dyes and textile wastewater", Chem. Eng. Process., 44, 461-470. https://doi.org/10.1016/j.cep.2004.06.010
- Bandini, S., Drei, J. and Vezzani, Z. (2005), "The role of pH and concentration on the ion rejection in polyamide nanofiltration membranes", J. Membrane Sci., 264, 65-74. https://doi.org/10.1016/j.memsci.2005.03.054
- Bes-Pia, A., Mendoza-Roca, J.A., Roig-Alcover, L., Iborra-Clar, A., Iborra Clar, M.I. and Alcaina-Miranda, M.I. (2003), "Comparison between nanofiltration and ozonation of biologically treated textile wastewater for its reuse in the industry", Desalination, 157, 81-86. https://doi.org/10.1016/S0011-9164(03)00386-2
- Chen, G., Chai, X., Yue, P.L. and Mi, Y. (1997), "Treatment of textile desizing wastewater by pilot scale nanofiltration membrane separation", J. Membrane Sci., 127, 93-99. https://doi.org/10.1016/S0376-7388(96)00311-0
- Gomes, A.C., Goncalves, I.C. and de Pinho, M.N. (2005), "The role of adsorption on nanofiltration of azo dyes", J. Membrane Sci., 255, 157-165. https://doi.org/10.1016/j.memsci.2005.01.031
- He, Y., Li, G., Wang, H., Zhao, J., Su, H. and Huang, Q. (2008), "Effect of operating conditions on separation performance of reactive dye solution with membrane process", J. Membrane Sci., 321, 183-189. https://doi.org/10.1016/j.memsci.2008.04.056
- Ismail, A.F. and Lau, W.J. (2009), "Influence of feed conditions on the rejection of salt and dye in aqueous solution by different characteristics of hollow fiber nanofiltration membrane", Desalination Water Treatment, 6, 281-288. https://doi.org/10.5004/dwt.2009.479
- Jiraratananon, R., Sungpet, A. and Luangsowan, P. (2000), "Performance evaluation of nanofiltration membranes for treatment of effluents containing reactive dye and salt", Desalination, 130, 177-183. https://doi.org/10.1016/S0011-9164(00)00085-0
-
Korbahti, B.K. and Rauf, M.A. (2009), "Determination of optimum operating conditions of carmine decoloration by
$UV/H_{2}O_{2}$ using response surface methodology", J. Hazard. Mater., 161, 281-286. https://doi.org/10.1016/j.jhazmat.2008.03.118 - Lau, W.J. and Ismail, A.F. (2009a), "Polymeric nanofiltration membrane for textile dyeing wastewater treatment: Preparation, performance evaluation, transport modelling, and fouling control - a review", Desalination, 245, 321-348. https://doi.org/10.1016/j.desal.2007.12.058
- Lau, W.J. and Ismail, A.F. (2009b), "Theoretical studies on the morphological and electrical properties of blended PES/SPEEK nanofiltration membranes using different sulfonation degree of SPEEK", J. Membrane Sci., 334, 30-42. https://doi.org/10.1016/j.memsci.2009.02.012
- Ledakowicz, J.S., Koprowski, T., Machnowski, W. and Knudsen, H.H. (1998), "Membrane filtration of textile dyehouse wastewater for technological water reuse", Desalination, 119, 1-10. https://doi.org/10.1016/S0011-9164(98)00078-2
- Mo, J.H., Lee, Y.H., Kim, J., Jeong, J.Y. and Jegal, J. (2008), "Treatment of dye aqueous solutions using nanofiltration polyamide composite membranes for the dye wastewater reuse", Dyes Pigments, 76, 429-434. https://doi.org/10.1016/j.dyepig.2006.09.007
- Montgomery, D.C. (1991), Design & analysis of experiments, Wiley, New York.
- Mulder, M. (1996), Basic principles of membrane technology, Kluwer Academic Publishers, London.
- Petrinic, I., Andersen, N.P.R., Sostar-Turk, S. and Marechal, A.M.L. (2007), "The removal of reactive dye printing compounds using nanofiltration", Dyes Pigments, 74, 512-518. https://doi.org/10.1016/j.dyepig.2006.11.003
- Schafer, A.I., Fane, A.G. and Waite, T.D. (2003), Nanofiltration: Principles and applications, Elsevier, Britain.
- Shu, L., Waite, T.D., Bliss, P.J., Fane, A. and Jegatheesan, V. (2005), "Nanofiltration for the possible reuse of water and recovery of sodium chloride salt from textile effluent", Desalination, 172, 235-243. https://doi.org/10.1016/j.desal.2004.07.037
- Spiegler, K.S. and Kedem, O. (1966), "Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes", Desalination, 1, 311-326. https://doi.org/10.1016/S0011-9164(00)80018-1
- Sungpet, A., Jiraratananon, R. and Luangsowan, P. (2004), "Treatment of effluents from textile-rinsing operations by thermally stable nanofiltration membranes", Desalination, 160, 75-81. https://doi.org/10.1016/S0011-9164(04)90019-7
- Szpyrkowicz, L., Juzzolino, C. and Kaul, S.N. (2001), "A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and Fenton reagent", Water Res., 35, 2129-2136. https://doi.org/10.1016/S0043-1354(00)00487-5
- Tang, C. and Chen, V. (2002), "Nanofiltration of textile wastewater for water reuse", Desalination, 143, 11-20. https://doi.org/10.1016/S0011-9164(02)00216-3
- Teixeira, M.R., Rosa, M.J. and Nystrom, M. (2005), "The role of membrane charge on nanofiltration performance", J. Membrane Sci., 265, 160-166. https://doi.org/10.1016/j.memsci.2005.04.046
- US Environmental Protection Agency (1996), Best management Practices for Pollution Prevention in the Textile Industry, EPA625R96004, USA.
- Van der Bruggen, B., Daems, B., Wilms, D. and Vandecasteele, C. (2001), "Mechanisms of retention and flux decline for the nanofiltration of dye baths from the textile industry", Sep. Purif. Technol., 22-23, 519-528. https://doi.org/10.1016/S1383-5866(00)00134-9
Cited by
- Application of response surface methodology for optimization of decolorization and mineralization of triazo dye Direct Blue 71 by Pseudomonas aeruginosa vol.4, pp.6, 2014, https://doi.org/10.1007/s13205-013-0192-7
- Effects of process conditions in submerged ultrafiltration for refinery wastewater treatment: Optimization of operating process by response surface methodology vol.287, 2012, https://doi.org/10.1016/j.desal.2011.08.051
- Surface modification of SiO2 nanoparticles and its impact on the properties of PES-based hollow fiber membrane vol.5, pp.72, 2015, https://doi.org/10.1039/C5RA07527K
- Car wash industry in Malaysia: Treatment of car wash effluent using ultrafiltration and nanofiltration membranes vol.104, 2013, https://doi.org/10.1016/j.seppur.2012.11.012
- Tackling colour issue of anaerobically-treated palm oil mill effluent using membrane technology vol.8, 2015, https://doi.org/10.1016/j.jwpe.2015.10.010
- Optimal feeding strategy of diafiltration buffer in batch membrane processes vol.411-412, 2012, https://doi.org/10.1016/j.memsci.2012.04.028
- The potential of direct contact membrane distillation for industrial textile wastewater treatment using PVDF-Cloisite 15A nanocomposite membrane vol.111, 2016, https://doi.org/10.1016/j.cherd.2016.05.018
- Optimum parameters for treating coolant wastewater using PVDF-membrane vol.156, pp.2261-236X, 2018, https://doi.org/10.1051/matecconf/201815608011
- Water purification from pesticides by spiral wound nanofiltration membrane vol.2, pp.1, 2010, https://doi.org/10.12989/mwt.2011.2.1.051
- Empirical modelling of chemically enhanced backwash during ultrafiltration process vol.2, pp.4, 2010, https://doi.org/10.12989/mwt.2011.2.4.225
- Water desalination and dyes separation from industrial wastewater by PES/TiO2NTs mixed matrix membranes vol.26, pp.8, 2010, https://doi.org/10.1007/s10965-019-1831-4