DOI QR코드

DOI QR Code

Investigation of allowable time-step sizes for generalized finite element analysis of the transient heat equation

  • O'Hara, P. (Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Newmark Laboratory) ;
  • Duarte, C.A. (Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Newmark Laboratory) ;
  • Eason, T. (Air Force Research Laboratory, Air Vehicles Directorate, WPAFB)
  • 투고 : 2010.07.07
  • 심사 : 2010.09.15
  • 발행 : 2010.09.25

초록

This paper investigates the heat equation for domains subjected to an internal source with a sharp spatial gradient. The solution is first approximated using linear finite elements, and sufficiently small time-step sizes to yield stable simulations. The main area of interest is then in the ability to approximate the solution using Generalized Finite Elements, and again explore the time-step limitations required for stable simulations. Both high order elements, as well as elements with special enrichments are used to generate solutions. When compared to linear finite elements, the high order elements deliver better accuracy at a given level of mesh refinement, but do not offer an increase in critical time-step size. When special enrichment functions are used, the solution can be approximated accurately on very coarse meshes, while yielding solutions which are both accurate and computationally efficient. The major conclusion of interest is that the significantly larger element size yields larger allowable time-step sizes while still maintaining stability of the time-stepping algorithm.

키워드

참고문헌

  1. Babu ka, I. and Melenk, J.M. (1997), "The partition of unity finite element method", Int J Numer Meth Eng, 40, 727-758. https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
  2. Babu ka, I., Caloz, G. and Osborn, J.E. (1994), "Special finite element methods for a class of second order elliptic problems with rough coefficients", SIAM J. Numer. Anal., 31(4), 945-981. https://doi.org/10.1137/0731051
  3. Babu ka, I., Ihlenburg, F., Paik, E. and Sauter, S. (1995), "A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution", Comput. Method. Appl. M, 128(3-4), 325-360. https://doi.org/10.1016/0045-7825(95)00890-X
  4. Belytschko, T. and Mullen, R. (1978), "Stability of explicit-implicit mesh partitions in time integration", Int J. Numer. Meth. Eng., 12(10), 1575-1586. https://doi.org/10.1002/nme.1620121008
  5. Belytschko, T., Yen, H.J. and Mullen, R. (1979), "Mixed methods for time integration", Comput. Method. Appl. M., 17/18, 259-275. https://doi.org/10.1016/0045-7825(79)90022-7
  6. Chang, S.Y. (2002), "Explicit pseudodynamic algorithm with unconditional stability", J. Eng. Mech.-ASCE, 128, 935-947. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:9(935)
  7. Chang, S.Y. (2007), "Enhanced, unconditionally stable, explicit pseudodynamic algorithm", J. Eng. Mech.-ASCE, 133, 541-554. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:5(541)
  8. Chang, S.Y. (2008), "An explicit method with improved stability", Int. J. Numer. Meth. Eng., 77(8), 1100-1120.
  9. Ching, H.K. and Chen, J.K. (2006), "Thermomechanical analysis of functionally graded composites under laser heating by the MLPG method", Comput. Model. Eng. Sci., 13(3), 199-217.
  10. D'Ambrosio, D. (2003), "Numerical prediction of laminar shock/shock interactions in hypersonic flow", J. Spacecraft Rockets, 40(2), 153-161. https://doi.org/10.2514/2.3947
  11. De, S. and Bathe, K.J. (2000), "The method of finite spheres", Comput Mech, 25, 329-345. https://doi.org/10.1007/s004660050481
  12. Duarte, C.A. (1996), The hp CloudMethod, PhD dissertation, The University of Texas at Austin, Austin, TX, USA.
  13. Duarte, C.A. and Babu ka, I. (2002), "Mesh-independent directional p-enrichment using the generalized finite element method", Int. J. Numer. Meth. Eng., 55(12), 1477-1492, http://dx.doi.org/10.1002/nme.557.
  14. Duarte, C.A., Babu ka, I. and Oden, J.T. (2000), "Generalized finite element methods for three dimensional structural mechanics problems", Comput. Struct., 77, 215-232. https://doi.org/10.1016/S0045-7949(99)00211-4
  15. Duarte, C.A., Hamzeh, O.N., Liszka, T.J. and Tworzydlo, W.W. (2001), "A generalized finite element method for the simulation of three-dimensional dynamic crack propagation", Comput. Meth. Appl. M., 190(15-17), 2227- 2262, http://dx.doi.org/10.1016/S0045-7825(00)00233-4.
  16. Duarte, C.A. and Oden, J.T. (1995), Hp clouds-A meshless method to solve boundary-value problem, Technical Report 95-05, TICAM, The University of Texas at Austin.
  17. Duarte, C.A. and Oden, J.T. (1996), "Hp clouds - An hp meshless method", Numer. Meth. Par. D. E., 12, 673- 705. https://doi.org/10.1002/(SICI)1098-2426(199611)12:6<673::AID-NUM3>3.0.CO;2-P
  18. Duarte, C.A. and Oden, J.T. (1996), "An hp adaptive method using clouds", Comput. Method. Appl. M., 139, 237-262. https://doi.org/10.1016/S0045-7825(96)01085-7
  19. Elguedj, T. Gravouil, A. and Maigre, H. (2009), "An explicit dynamics exteneded finite element method part 1: Mass lumping for arbitrary enrichment functions", Computer Methods in Applied Mechanics and Engineering, 198, 2297-2317. https://doi.org/10.1016/j.cma.2009.02.019
  20. Friedmann, P.P., Powell, K.G., Mcnamara, J.J., Thuruthimattam, B.J. and Bartels, R. (2004), "Hypersonic aerothermoelastic studies for reusable launch vehicles", Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Palm Springs, CA, USA, April.
  21. Friedmann, P.P., Powell, K.G., Mcnamara, J.J., Thuruthimattam, B.J. and Bartels, R. (2005), "Three-dimensional aeroelastic and aerothermoelastic behavior in hypersonic flow", Proceedings of the 46th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics & Materials Conference, Austin, TX, USA, April.
  22. Fries, T.P. and Zilian, A. (2009), "On time integration in the xfem", Int. J. Numer. Meth. Eng., 79, 69-93. https://doi.org/10.1002/nme.2558
  23. Gravouil, A., Elguedj, T. and Maigre, H. (2009), "An explicit dynamics exteneded finite element method part 2: Element-by-element stable-explicit/explicit dynamic scheme", Comput Method. Appl. M., 198, 2318-2328. https://doi.org/10.1016/j.cma.2009.02.018
  24. Griebel, M. and Schweitzer, M.A. (2000), "A particle-partition of unity method for the solution of elliptic, parabolic and hyperbolic PDEs", SIAM J. Sci. Comput., 22(3), 853-890. https://doi.org/10.1137/S1064827599355840
  25. Hughes, T.J.R. and Liu, W.K. (1978), "Implicit-explicit finite elements in transient analysis: implementation and numerical examples", J. Appl. Mech.-T. ASME, 45, 375-378. https://doi.org/10.1115/1.3424305
  26. Hughes, T.J.R., Pister, K.S. and Taylor, R.L. (1979), "Implicit-explicit finite elements in nonlinear transient analysis", Comput. Method. Appl. M., 17/18, 159-182. https://doi.org/10.1016/0045-7825(79)90086-0
  27. Li, W., Deng, X. and Rosakis, A.J. (1996), "Determination of temperature field around a rapidly moving cracktip in an elastic-plastic solid", Int. J. Heat Mass Tran., 39(4), 677-690. https://doi.org/10.1016/0017-9310(95)00175-1
  28. Lindgren, L.E. (2006), "Numerical modeling of welding", Comput. Method. Appl. M., 195, 6710-6736. https://doi.org/10.1016/j.cma.2005.08.018
  29. Melenk, J.M. and Babu ka, I. (1996), "The partition of unity finite element method: Basic theory and applications", Comput. Method. Appl. M., 139, 289-314. https://doi.org/10.1016/S0045-7825(96)01087-0
  30. Menouillard, T., Rethore, J., Combescure, A. and Bung, H. (2006), "Efficient explicit time stepping for the extended finite element method (x-fem)", Inter. J. Numer. Meth. Eng., 68, 911-939. https://doi.org/10.1002/nme.1718
  31. Menouillard, T., Rethore, J., Combescure, A. and Bung, H. (2008), "Mass lumping strategies for x-fem explicit dynamics: Applications to crack propagation", Int. J. Numer. Meth. Eng., 74, 447-474. https://doi.org/10.1002/nme.2180
  32. Merle, R. and Dolbow, J. (2002), "Solving thermal and phase change problem with the extended finite element method", Comput. Mech., 28, 339-350. https://doi.org/10.1007/s00466-002-0298-y
  33. Moës, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46, 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  34. Moselle, J.R., Wieting, A.R., Holden, M.S. and Glass, C. (1988), "Studies of aerothermal loads generated in regions of shock/shock interaction in hypersonic flow", Proceedings of the AIAA 26th Aerospace Sciences Meeting, Reno, NV, USA, January.
  35. Neal, M.O. and Belytschko, T. (1989), "Explicit-explicit subcycling with non-integer time step ratios for structural dynamic systems", Comput. Struct., 31(6), 871-880. https://doi.org/10.1016/0045-7949(89)90272-1
  36. Oden, J.T., Duarte, C.A. and Zienkiewicz, O.C. (1998), "A new cloud-based hp finite element method", Comput. Method. Appl. M., 153, 117-126. https://doi.org/10.1016/S0045-7825(97)00039-X
  37. O'Hara, P., Duarte, C.A. and Eason, T. (2009), "Generalized finite element analysis of three-dimensional heat transfer problems exhibiting sharp thermal gradients", Comput. Method. Appl. M., 198(21-26), 1857-1871, http://dx.doi.org/10.1016/j.cma.2008.12.024.
  38. O'Hara, P., Duarte, C.A. and Eason, T. (2010), "Transient analysis of sharp thermal gradients using coarse finite element meshes", Comput. Method. Appl. M., Submitted for publication.
  39. O'Hara, P. (2007), Finite element analysis of three-dimensional heat transfer for problems involving sharp thermal gradients, Master's thesis, University of Illinois at Urbana-Champaign, 2007.
  40. Reddy, J.N. and Gartling, D.K. (2001), The Finite Element Method in Heat Transfer and Fluid Dynamics, CRC Press LLC, Boca Raton, Florida.
  41. Simone, A., Duarte, C.A. and van der Giessen, E. (2006), "A generalized finite element method for polycrystals with discontinuous grain boundaries", Int. J. Numer. Meth. Eng., 67(8), 1122-1145, http://dx.doi.org/10.1002/ nme.1658.
  42. Spearman, M.L. (2005), "Lessons learned in the high-speed aerodynamic research programs of the NACA/ NASA", Proceedings of the 43rd AIAA Aerospace Sciences Meeting, Reno, NV, USA, January.
  43. Strouboulis, T., Babu¡ska, I. and Copps, K. (2000), "The design and analysis of the generalized finite element mehtod" Comput. Method. Appl. M., 81(1-3), 43-69.
  44. Strouboulis, T., Copps, K. and Babu ka, I. (2001), "The generalized finite element method", Comput. Method. Appl. M., 190, 4081-4193. https://doi.org/10.1016/S0045-7825(01)00188-8
  45. Tamma, K.K. and Saw, K.C. (1989), "Hierarchical p-version finite elements and adaptive a posteriori computational formulations for two-dimensional thermal analysis", Comput. Struct., 32(5), 1183-1194. https://doi.org/10.1016/0045-7949(89)90418-5
  46. Thornton, E.A., Wieting, A.R. and Morgan, K. (1991), "Application of integrated fluid-thermal-structural analysis methods", Thin Wall. Struct., 11, 1-23. https://doi.org/10.1016/0263-8231(91)90008-7
  47. Turner, T.L. and Ash, R.L. (1990), "Analysis of the thermal environment and thermal response associated with thermal-acoustic testing", Proceedings of the AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, CA, USA, April.
  48. Tzou, D.Y. (1992), "Fracture path emanating from a rapidly moving heat soucre - The effect of thermal shock waves under high rate response", Eng. Fract. Mech., 41(1), 111-125. https://doi.org/10.1016/0013-7944(92)90100-S
  49. Wieting, A.R. (1987), Experimental study of shock wave interference heating on a cylindrical leading edge, NASA Technical Memorandum 100484.
  50. Yaghi, A.H., Hyde, T.H., Becker, A.A. and Sun, W. (2008), "Finite element simulation of welding and residual stresses in a p91 steel pipe incorporating solid-state phase transformation and post-weld heat treatment", J. Strain Anal. Eng., 43, 275-293. https://doi.org/10.1243/03093247JSA372
  51. Yu, G., Masubichi, K., Maekawa, T. and Patrikalakis, N.M. (1999), "A finite element model for metal forming by laser line heating", Proceedings of the 10th International Conference on Computer Applications in Shipbuilding, Cambridge, MA, USA.
  52. Yu, G., Masubichi, K., Maekawa, T. and Patrikalakis, N.M. (2001), "Fem simulation of laser forming of metal plates", J. Manuf. Sci. E.-T. ASME, 123, 405-410. https://doi.org/10.1115/1.1371930

피인용 문헌

  1. Analysis and improvements of global–local enrichments for the Generalized Finite Element Method vol.245-246, 2012, https://doi.org/10.1016/j.cma.2012.06.021
  2. Reduced Order Modeling with Local Enrichment for the Nonlinear Geometric Response of a Cracked Panel pp.1533-385X, 2018, https://doi.org/10.2514/1.J057358