References
- Babu ka, I. and Melenk, J.M. (1997), "The partition of unity finite element method", Int J Numer Meth Eng, 40, 727-758. https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
- Babu ka, I., Caloz, G. and Osborn, J.E. (1994), "Special finite element methods for a class of second order elliptic problems with rough coefficients", SIAM J. Numer. Anal., 31(4), 945-981. https://doi.org/10.1137/0731051
- Babu ka, I., Ihlenburg, F., Paik, E. and Sauter, S. (1995), "A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution", Comput. Method. Appl. M, 128(3-4), 325-360. https://doi.org/10.1016/0045-7825(95)00890-X
- Belytschko, T. and Mullen, R. (1978), "Stability of explicit-implicit mesh partitions in time integration", Int J. Numer. Meth. Eng., 12(10), 1575-1586. https://doi.org/10.1002/nme.1620121008
- Belytschko, T., Yen, H.J. and Mullen, R. (1979), "Mixed methods for time integration", Comput. Method. Appl. M., 17/18, 259-275. https://doi.org/10.1016/0045-7825(79)90022-7
- Chang, S.Y. (2002), "Explicit pseudodynamic algorithm with unconditional stability", J. Eng. Mech.-ASCE, 128, 935-947. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:9(935)
- Chang, S.Y. (2007), "Enhanced, unconditionally stable, explicit pseudodynamic algorithm", J. Eng. Mech.-ASCE, 133, 541-554. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:5(541)
- Chang, S.Y. (2008), "An explicit method with improved stability", Int. J. Numer. Meth. Eng., 77(8), 1100-1120.
- Ching, H.K. and Chen, J.K. (2006), "Thermomechanical analysis of functionally graded composites under laser heating by the MLPG method", Comput. Model. Eng. Sci., 13(3), 199-217.
- D'Ambrosio, D. (2003), "Numerical prediction of laminar shock/shock interactions in hypersonic flow", J. Spacecraft Rockets, 40(2), 153-161. https://doi.org/10.2514/2.3947
- De, S. and Bathe, K.J. (2000), "The method of finite spheres", Comput Mech, 25, 329-345. https://doi.org/10.1007/s004660050481
- Duarte, C.A. (1996), The hp CloudMethod, PhD dissertation, The University of Texas at Austin, Austin, TX, USA.
- Duarte, C.A. and Babu ka, I. (2002), "Mesh-independent directional p-enrichment using the generalized finite element method", Int. J. Numer. Meth. Eng., 55(12), 1477-1492, http://dx.doi.org/10.1002/nme.557.
- Duarte, C.A., Babu ka, I. and Oden, J.T. (2000), "Generalized finite element methods for three dimensional structural mechanics problems", Comput. Struct., 77, 215-232. https://doi.org/10.1016/S0045-7949(99)00211-4
- Duarte, C.A., Hamzeh, O.N., Liszka, T.J. and Tworzydlo, W.W. (2001), "A generalized finite element method for the simulation of three-dimensional dynamic crack propagation", Comput. Meth. Appl. M., 190(15-17), 2227- 2262, http://dx.doi.org/10.1016/S0045-7825(00)00233-4.
- Duarte, C.A. and Oden, J.T. (1995), Hp clouds-A meshless method to solve boundary-value problem, Technical Report 95-05, TICAM, The University of Texas at Austin.
- Duarte, C.A. and Oden, J.T. (1996), "Hp clouds - An hp meshless method", Numer. Meth. Par. D. E., 12, 673- 705. https://doi.org/10.1002/(SICI)1098-2426(199611)12:6<673::AID-NUM3>3.0.CO;2-P
- Duarte, C.A. and Oden, J.T. (1996), "An hp adaptive method using clouds", Comput. Method. Appl. M., 139, 237-262. https://doi.org/10.1016/S0045-7825(96)01085-7
- Elguedj, T. Gravouil, A. and Maigre, H. (2009), "An explicit dynamics exteneded finite element method part 1: Mass lumping for arbitrary enrichment functions", Computer Methods in Applied Mechanics and Engineering, 198, 2297-2317. https://doi.org/10.1016/j.cma.2009.02.019
- Friedmann, P.P., Powell, K.G., Mcnamara, J.J., Thuruthimattam, B.J. and Bartels, R. (2004), "Hypersonic aerothermoelastic studies for reusable launch vehicles", Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Palm Springs, CA, USA, April.
- Friedmann, P.P., Powell, K.G., Mcnamara, J.J., Thuruthimattam, B.J. and Bartels, R. (2005), "Three-dimensional aeroelastic and aerothermoelastic behavior in hypersonic flow", Proceedings of the 46th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics & Materials Conference, Austin, TX, USA, April.
- Fries, T.P. and Zilian, A. (2009), "On time integration in the xfem", Int. J. Numer. Meth. Eng., 79, 69-93. https://doi.org/10.1002/nme.2558
- Gravouil, A., Elguedj, T. and Maigre, H. (2009), "An explicit dynamics exteneded finite element method part 2: Element-by-element stable-explicit/explicit dynamic scheme", Comput Method. Appl. M., 198, 2318-2328. https://doi.org/10.1016/j.cma.2009.02.018
- Griebel, M. and Schweitzer, M.A. (2000), "A particle-partition of unity method for the solution of elliptic, parabolic and hyperbolic PDEs", SIAM J. Sci. Comput., 22(3), 853-890. https://doi.org/10.1137/S1064827599355840
- Hughes, T.J.R. and Liu, W.K. (1978), "Implicit-explicit finite elements in transient analysis: implementation and numerical examples", J. Appl. Mech.-T. ASME, 45, 375-378. https://doi.org/10.1115/1.3424305
- Hughes, T.J.R., Pister, K.S. and Taylor, R.L. (1979), "Implicit-explicit finite elements in nonlinear transient analysis", Comput. Method. Appl. M., 17/18, 159-182. https://doi.org/10.1016/0045-7825(79)90086-0
- Li, W., Deng, X. and Rosakis, A.J. (1996), "Determination of temperature field around a rapidly moving cracktip in an elastic-plastic solid", Int. J. Heat Mass Tran., 39(4), 677-690. https://doi.org/10.1016/0017-9310(95)00175-1
- Lindgren, L.E. (2006), "Numerical modeling of welding", Comput. Method. Appl. M., 195, 6710-6736. https://doi.org/10.1016/j.cma.2005.08.018
- Melenk, J.M. and Babu ka, I. (1996), "The partition of unity finite element method: Basic theory and applications", Comput. Method. Appl. M., 139, 289-314. https://doi.org/10.1016/S0045-7825(96)01087-0
- Menouillard, T., Rethore, J., Combescure, A. and Bung, H. (2006), "Efficient explicit time stepping for the extended finite element method (x-fem)", Inter. J. Numer. Meth. Eng., 68, 911-939. https://doi.org/10.1002/nme.1718
- Menouillard, T., Rethore, J., Combescure, A. and Bung, H. (2008), "Mass lumping strategies for x-fem explicit dynamics: Applications to crack propagation", Int. J. Numer. Meth. Eng., 74, 447-474. https://doi.org/10.1002/nme.2180
- Merle, R. and Dolbow, J. (2002), "Solving thermal and phase change problem with the extended finite element method", Comput. Mech., 28, 339-350. https://doi.org/10.1007/s00466-002-0298-y
- Moës, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46, 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
- Moselle, J.R., Wieting, A.R., Holden, M.S. and Glass, C. (1988), "Studies of aerothermal loads generated in regions of shock/shock interaction in hypersonic flow", Proceedings of the AIAA 26th Aerospace Sciences Meeting, Reno, NV, USA, January.
- Neal, M.O. and Belytschko, T. (1989), "Explicit-explicit subcycling with non-integer time step ratios for structural dynamic systems", Comput. Struct., 31(6), 871-880. https://doi.org/10.1016/0045-7949(89)90272-1
- Oden, J.T., Duarte, C.A. and Zienkiewicz, O.C. (1998), "A new cloud-based hp finite element method", Comput. Method. Appl. M., 153, 117-126. https://doi.org/10.1016/S0045-7825(97)00039-X
- O'Hara, P., Duarte, C.A. and Eason, T. (2009), "Generalized finite element analysis of three-dimensional heat transfer problems exhibiting sharp thermal gradients", Comput. Method. Appl. M., 198(21-26), 1857-1871, http://dx.doi.org/10.1016/j.cma.2008.12.024.
- O'Hara, P., Duarte, C.A. and Eason, T. (2010), "Transient analysis of sharp thermal gradients using coarse finite element meshes", Comput. Method. Appl. M., Submitted for publication.
- O'Hara, P. (2007), Finite element analysis of three-dimensional heat transfer for problems involving sharp thermal gradients, Master's thesis, University of Illinois at Urbana-Champaign, 2007.
- Reddy, J.N. and Gartling, D.K. (2001), The Finite Element Method in Heat Transfer and Fluid Dynamics, CRC Press LLC, Boca Raton, Florida.
- Simone, A., Duarte, C.A. and van der Giessen, E. (2006), "A generalized finite element method for polycrystals with discontinuous grain boundaries", Int. J. Numer. Meth. Eng., 67(8), 1122-1145, http://dx.doi.org/10.1002/ nme.1658.
- Spearman, M.L. (2005), "Lessons learned in the high-speed aerodynamic research programs of the NACA/ NASA", Proceedings of the 43rd AIAA Aerospace Sciences Meeting, Reno, NV, USA, January.
- Strouboulis, T., Babu¡ska, I. and Copps, K. (2000), "The design and analysis of the generalized finite element mehtod" Comput. Method. Appl. M., 81(1-3), 43-69.
- Strouboulis, T., Copps, K. and Babu ka, I. (2001), "The generalized finite element method", Comput. Method. Appl. M., 190, 4081-4193. https://doi.org/10.1016/S0045-7825(01)00188-8
- Tamma, K.K. and Saw, K.C. (1989), "Hierarchical p-version finite elements and adaptive a posteriori computational formulations for two-dimensional thermal analysis", Comput. Struct., 32(5), 1183-1194. https://doi.org/10.1016/0045-7949(89)90418-5
- Thornton, E.A., Wieting, A.R. and Morgan, K. (1991), "Application of integrated fluid-thermal-structural analysis methods", Thin Wall. Struct., 11, 1-23. https://doi.org/10.1016/0263-8231(91)90008-7
- Turner, T.L. and Ash, R.L. (1990), "Analysis of the thermal environment and thermal response associated with thermal-acoustic testing", Proceedings of the AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, CA, USA, April.
- Tzou, D.Y. (1992), "Fracture path emanating from a rapidly moving heat soucre - The effect of thermal shock waves under high rate response", Eng. Fract. Mech., 41(1), 111-125. https://doi.org/10.1016/0013-7944(92)90100-S
- Wieting, A.R. (1987), Experimental study of shock wave interference heating on a cylindrical leading edge, NASA Technical Memorandum 100484.
- Yaghi, A.H., Hyde, T.H., Becker, A.A. and Sun, W. (2008), "Finite element simulation of welding and residual stresses in a p91 steel pipe incorporating solid-state phase transformation and post-weld heat treatment", J. Strain Anal. Eng., 43, 275-293. https://doi.org/10.1243/03093247JSA372
- Yu, G., Masubichi, K., Maekawa, T. and Patrikalakis, N.M. (1999), "A finite element model for metal forming by laser line heating", Proceedings of the 10th International Conference on Computer Applications in Shipbuilding, Cambridge, MA, USA.
- Yu, G., Masubichi, K., Maekawa, T. and Patrikalakis, N.M. (2001), "Fem simulation of laser forming of metal plates", J. Manuf. Sci. E.-T. ASME, 123, 405-410. https://doi.org/10.1115/1.1371930
Cited by
- Analysis and improvements of global–local enrichments for the Generalized Finite Element Method vol.245-246, 2012, https://doi.org/10.1016/j.cma.2012.06.021
- Reduced Order Modeling with Local Enrichment for the Nonlinear Geometric Response of a Cracked Panel pp.1533-385X, 2018, https://doi.org/10.2514/1.J057358