DOI QR코드

DOI QR Code

A multiscale method for analysis of heterogeneous thin slabs with irreducible three dimensional microstructures

  • Received : 2010.07.09
  • Accepted : 2010.08.17
  • Published : 2010.09.25

Abstract

A multiscale method is presented for analysis of thin slab structures in which the microstructures can not be reduced to two-dimensional plane stress models and thus three dimensional treatment of microstructures is necessary. This method is based on the classical asymptotic expansion multiscale approach but with consideration of the special geometric characteristics of the slab structures. This is achieved via a special form of multiscale asymptotic expansion of displacement field. The expanded three dimensional displacement field only exhibits in-plane periodicity and the thickness dimension is in the global scale. Consequently by employing the multiscale asymptotic expansion approach the global macroscopic structural problem and the local microscopic unit cell problem are rationally set up. It is noted that the unit cell is subjected to the in-plane periodic boundary conditions as well as the traction free conditions on the out of plane surfaces of the unit cell. The variational formulation and finite element implementation of the unit cell problem are discussed in details. Thereafter the in-plane material response is systematically characterized via homogenization analysis of the proposed special unit cell problem for different microstructures and the reasoning of the present method is justified. Moreover the present multiscale analysis procedure is illustrated through a plane stress beam example.

Keywords

References

  1. Bensoussan, A., Lions, J.L. and Papanicolaou, G. (1978), Asymptotic analysis for periodic Structures, North- Holland Publishing Company, Amsterdam.
  2. Cao, L.Q., Cui, J.Z. and Zhu, D.C. (2002), "Multiscale asymptotic analysis and numerical simulation for the second order Helmholtz equation with oscillating coefficients over general convex domains", SIAM J. Numer. Anal., 40, 543-577. https://doi.org/10.1137/S0036142900376110
  3. Chen, J.S. and Mehraeen, S. (2004), "Variationally consistent multiscale modeling and homogenization of stressed grain growth", Comput. Method. Appl. M., 193, 1825-1848. https://doi.org/10.1016/j.cma.2003.12.038
  4. Chen, J.S. and Mehraeen, S. (2005), "Multi-scale modeling of heterogeneous materials with fixed and evolving microstructures", Model. Simul. Mater. Sci., 13, 95-121. https://doi.org/10.1088/0965-0393/13/1/007
  5. Chung, P.W. and Namburu R.R. (2003), "On a formulation for a multiscale atomistic-continuum homogenization method", Int. J. Solids Struct., 40, 2563-2588. https://doi.org/10.1016/S0020-7683(03)00058-1
  6. Fish, J. (eds) (2008), Bridging the scales in science and engineering, Oxford University Press.
  7. Fish, J., Shek, K., Pandheeradi, M. and Shephard M.S. (1997), "Computational plasticity for composite structures based on mathematical homogenization: theory and practice", Comput. Method. Appl. M., 148, 53-73. https://doi.org/10.1016/S0045-7825(97)00030-3
  8. Ghosh, S. and Moorthy, S. (1995), "Elastic-plastic analysis of arbitrary heterogeneous materials with the voronoi cell finite element method", Comput. Method. Appl. M., 121, 373-409. https://doi.org/10.1016/0045-7825(94)00687-I
  9. Ghosh, S., Dakshinamurthy, V., Hu, C. and Bai, J. (2009), "A multi-scale framework for characterization and modeling ductile fracture in heterogeneous aluminum alloys", J. Multiscale Model., 1, 21-55. https://doi.org/10.1142/S1756973709000050
  10. Guedes, J.S. and Kikuchi, N. (1989), "Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods", Comput. Method. Appl. M., 83, 143-198.
  11. Han, F., Cui, J.Z. and Yu, Y. (2008), "The statistical two-order and two-scale method for predicting the mechanics parameters of core-shell particle-filled polymer composites", Interact. Multiscale Mech., 1, 231- 250. https://doi.org/10.12989/imm.2008.1.2.231
  12. Hassani, B. and Hinton, E. (1998), Homogenization and structural topology optimization, Springer, Berlin.
  13. Hughes, T.J.R., The finite element method: linear static and dynamic finite element analysis, Dover publications: Mineola, NY, 2000.
  14. Kaczmarczyk, L., Pearce, C.J. and Bicanic, N. (2008), "Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization", Int. J. Numer. Method. Eng., 74, 506-522. https://doi.org/10.1002/nme.2188
  15. Mang, H.A., Aigner, E., Eberhardsteiner, J., Hackspiel, C., Hellmich, C., Hofstetter, K., Lackner, R., Pichler, B., Scheiner, S. and Stürzenbecher, R. (2009), "Computational multiscale analysis in civil engineering", Interact. Multiscale Mech., 2, 109-128. https://doi.org/10.12989/imm.2009.2.2.109
  16. Mehraeen, S., Chen, J.S. and Hu, W. (2009), "An iterative asymptotic expansion method for elliptic eigenvalue problems with oscillating coefficients", Comput. Mech., 46, 349-361.
  17. Miehe, C. and Koch, A. (2002), "Computational micro-to-macro transitions of discretized microstructures undergoing small strains", Arch. Appl. Mech., 72, 300-317. https://doi.org/10.1007/s00419-002-0212-2
  18. Mura, T. (1987), Mechanics of defects in solids, Nijhoff, The Hague.
  19. Nemat-Nasser, S. and Hori, M. (1993), Micromechanis: Overall properties of heterogeneous materials, Elsevier, Amsterdam.
  20. Ponte Castaneda, P. and Suquet, P. (1998), "Nonlinear composites", Adv. Appl. Mech., 34, 171-303.
  21. Sanchez-Palebncia, E. and Zaoui, A. (eds) (1987), Homogenization techniques for composite media, Springer, Berlin.
  22. Swan, C.C. (1994), "Techniques for stress- and strain-controlled homogenization of inelastic periodic composites", Interact. Multiscale Mech., 117, 249-267.
  23. Takano, N., Ohnishia, Y., Zakoa, M. and Nishiyabub, K. (2000), "The formulation of homogenization method applied to large deformation problem for composite materials", Int. J. Solids Struct., 37, 6517-6535. https://doi.org/10.1016/S0020-7683(99)00284-X
  24. Wang, D., Chen, J.S. and Sun, L.Z. (2003), "Homogenization of magnetostrictive particle-filed elastomers using an interface-enriched reproducing kernel particle method", Finite Elem. Anal. Des., 39, 765-782. https://doi.org/10.1016/S0168-874X(03)00058-1
  25. Wu, C.T. and Koishi, M. (2009), "A meshfree procedure for the microscopic analysis of particle-reinforced rubber compounds", Interact. Multiscale Mech., 2, 147-169.
  26. Yuan, Z. and Fish, J. (2009), "Hierarchical model reduction at multiple scales", Int. J. Numer. Method. Eng., 79, 314-339, https://doi.org/10.1002/nme.2554
  27. Zhang, H.W., Zhang, S., Bi, J.Y. and Schrefler, B.A. (2006), "Thermo-mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach", Int. J. Numer. Method. Eng., 69, 87-113.
  28. Zhang, X., Mehraeen, S., Chen, J.S. and Ghoniem, N. (2006), "Multiscale total Lagrangian formulation for modeling dislocation-induced plastic deformation in polycrystalline materials", Int. J. Multiscale Comput. Eng., 4, 29-46. https://doi.org/10.1615/IntJMultCompEng.v4.i1.40

Cited by

  1. Consistent multiscale analysis of heterogeneous thin plates with smoothed quadratic Hermite triangular elements vol.12, pp.4, 2016, https://doi.org/10.1007/s10999-015-9334-x
  2. Consistent Asymptotic Expansion Multiscale Formulation for Heterogeneous Column Structure vol.134, pp.3, 2012, https://doi.org/10.1115/1.4006505
  3. Multiscale modeling of the anisotropic shock response of β-HMX molecular polycrystals vol.4, pp.2, 2010, https://doi.org/10.12989/imm.2011.4.2.139
  4. Large-scale and small-scale self-excited torsional vibrations of homogeneous and sectional drill strings vol.4, pp.4, 2010, https://doi.org/10.12989/imm.2011.4.4.291