References
- Bensoussan, A., Lions, J.L. and Papanicolaou, G. (1978), Asymptotic analysis for periodic Structures, North- Holland Publishing Company, Amsterdam.
- Cao, L.Q., Cui, J.Z. and Zhu, D.C. (2002), "Multiscale asymptotic analysis and numerical simulation for the second order Helmholtz equation with oscillating coefficients over general convex domains", SIAM J. Numer. Anal., 40, 543-577. https://doi.org/10.1137/S0036142900376110
- Chen, J.S. and Mehraeen, S. (2004), "Variationally consistent multiscale modeling and homogenization of stressed grain growth", Comput. Method. Appl. M., 193, 1825-1848. https://doi.org/10.1016/j.cma.2003.12.038
- Chen, J.S. and Mehraeen, S. (2005), "Multi-scale modeling of heterogeneous materials with fixed and evolving microstructures", Model. Simul. Mater. Sci., 13, 95-121. https://doi.org/10.1088/0965-0393/13/1/007
- Chung, P.W. and Namburu R.R. (2003), "On a formulation for a multiscale atomistic-continuum homogenization method", Int. J. Solids Struct., 40, 2563-2588. https://doi.org/10.1016/S0020-7683(03)00058-1
- Fish, J. (eds) (2008), Bridging the scales in science and engineering, Oxford University Press.
- Fish, J., Shek, K., Pandheeradi, M. and Shephard M.S. (1997), "Computational plasticity for composite structures based on mathematical homogenization: theory and practice", Comput. Method. Appl. M., 148, 53-73. https://doi.org/10.1016/S0045-7825(97)00030-3
- Ghosh, S. and Moorthy, S. (1995), "Elastic-plastic analysis of arbitrary heterogeneous materials with the voronoi cell finite element method", Comput. Method. Appl. M., 121, 373-409. https://doi.org/10.1016/0045-7825(94)00687-I
- Ghosh, S., Dakshinamurthy, V., Hu, C. and Bai, J. (2009), "A multi-scale framework for characterization and modeling ductile fracture in heterogeneous aluminum alloys", J. Multiscale Model., 1, 21-55. https://doi.org/10.1142/S1756973709000050
- Guedes, J.S. and Kikuchi, N. (1989), "Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods", Comput. Method. Appl. M., 83, 143-198.
- Han, F., Cui, J.Z. and Yu, Y. (2008), "The statistical two-order and two-scale method for predicting the mechanics parameters of core-shell particle-filled polymer composites", Interact. Multiscale Mech., 1, 231- 250. https://doi.org/10.12989/imm.2008.1.2.231
- Hassani, B. and Hinton, E. (1998), Homogenization and structural topology optimization, Springer, Berlin.
- Hughes, T.J.R., The finite element method: linear static and dynamic finite element analysis, Dover publications: Mineola, NY, 2000.
- Kaczmarczyk, L., Pearce, C.J. and Bicanic, N. (2008), "Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization", Int. J. Numer. Method. Eng., 74, 506-522. https://doi.org/10.1002/nme.2188
- Mang, H.A., Aigner, E., Eberhardsteiner, J., Hackspiel, C., Hellmich, C., Hofstetter, K., Lackner, R., Pichler, B., Scheiner, S. and Stürzenbecher, R. (2009), "Computational multiscale analysis in civil engineering", Interact. Multiscale Mech., 2, 109-128. https://doi.org/10.12989/imm.2009.2.2.109
- Mehraeen, S., Chen, J.S. and Hu, W. (2009), "An iterative asymptotic expansion method for elliptic eigenvalue problems with oscillating coefficients", Comput. Mech., 46, 349-361.
- Miehe, C. and Koch, A. (2002), "Computational micro-to-macro transitions of discretized microstructures undergoing small strains", Arch. Appl. Mech., 72, 300-317. https://doi.org/10.1007/s00419-002-0212-2
- Mura, T. (1987), Mechanics of defects in solids, Nijhoff, The Hague.
- Nemat-Nasser, S. and Hori, M. (1993), Micromechanis: Overall properties of heterogeneous materials, Elsevier, Amsterdam.
- Ponte Castaneda, P. and Suquet, P. (1998), "Nonlinear composites", Adv. Appl. Mech., 34, 171-303.
- Sanchez-Palebncia, E. and Zaoui, A. (eds) (1987), Homogenization techniques for composite media, Springer, Berlin.
- Swan, C.C. (1994), "Techniques for stress- and strain-controlled homogenization of inelastic periodic composites", Interact. Multiscale Mech., 117, 249-267.
- Takano, N., Ohnishia, Y., Zakoa, M. and Nishiyabub, K. (2000), "The formulation of homogenization method applied to large deformation problem for composite materials", Int. J. Solids Struct., 37, 6517-6535. https://doi.org/10.1016/S0020-7683(99)00284-X
- Wang, D., Chen, J.S. and Sun, L.Z. (2003), "Homogenization of magnetostrictive particle-filed elastomers using an interface-enriched reproducing kernel particle method", Finite Elem. Anal. Des., 39, 765-782. https://doi.org/10.1016/S0168-874X(03)00058-1
- Wu, C.T. and Koishi, M. (2009), "A meshfree procedure for the microscopic analysis of particle-reinforced rubber compounds", Interact. Multiscale Mech., 2, 147-169.
- Yuan, Z. and Fish, J. (2009), "Hierarchical model reduction at multiple scales", Int. J. Numer. Method. Eng., 79, 314-339, https://doi.org/10.1002/nme.2554
- Zhang, H.W., Zhang, S., Bi, J.Y. and Schrefler, B.A. (2006), "Thermo-mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach", Int. J. Numer. Method. Eng., 69, 87-113.
- Zhang, X., Mehraeen, S., Chen, J.S. and Ghoniem, N. (2006), "Multiscale total Lagrangian formulation for modeling dislocation-induced plastic deformation in polycrystalline materials", Int. J. Multiscale Comput. Eng., 4, 29-46. https://doi.org/10.1615/IntJMultCompEng.v4.i1.40
Cited by
- Consistent multiscale analysis of heterogeneous thin plates with smoothed quadratic Hermite triangular elements vol.12, pp.4, 2016, https://doi.org/10.1007/s10999-015-9334-x
- Consistent Asymptotic Expansion Multiscale Formulation for Heterogeneous Column Structure vol.134, pp.3, 2012, https://doi.org/10.1115/1.4006505
- Multiscale modeling of the anisotropic shock response of β-HMX molecular polycrystals vol.4, pp.2, 2010, https://doi.org/10.12989/imm.2011.4.2.139
- Large-scale and small-scale self-excited torsional vibrations of homogeneous and sectional drill strings vol.4, pp.4, 2010, https://doi.org/10.12989/imm.2011.4.4.291