DOI QR코드

DOI QR Code

Analysis of wave motion in micropolar transversely isotropic thermoelastic half space without energy dissipation

  • Received : 2010.04.11
  • Accepted : 2010.05.12
  • Published : 2010.06.25

Abstract

The propagation of waves in a micropolar transversely isotropic half space in the theory of thermoelasticity without energy dissipation are discussed. After developing the solution, the phase velocities and attenuation quality factor has been obtained. The expressions for amplitudes of stresses, displacements, microrotation and temperature distribution have been derived and computed numerically. The numerical results have been plotted graphically.

Keywords

References

  1. Chandershekharia, D.S. (1986), "Heat flux dependent micropolar thermoelasticity", Int. J. Eng. Sci., 24, 1389- 1395. https://doi.org/10.1016/0020-7225(86)90067-4
  2. Chandrasekharaiah, D.S. and Srinath, K.S. (1996), "One-dimensional waves in a thermoelastic half-space without energy dissipation", Int. J. Eng. Sci., 34, 1447-1455. https://doi.org/10.1016/0020-7225(96)00034-1
  3. Dhaliwal, R.S. and Singh, A. (1987), Micropolar thermoelasticity, in: R. Hetnarski (Ed.), Thermal stresses II, Mechanical and Mathematical Methods, Ser. 2, North-Holland.
  4. Dost, S. and Tabarrak, B. (1978), "Generalised micropolar thermoelasticity", Int. J. Eng. Sci., 16, 173-183. https://doi.org/10.1016/0020-7225(78)90046-0
  5. Dyszlewicz, Janusz (2003), Micropolar theory of elasticity, Lecture notes in applied and computational mechanics.
  6. Eringen, A.C. (1968), Theory of micropolar elasticity, In Fracture, ed. H. Liebowitz, Vol. II. Academic Press, New York.
  7. Eringen, A.C. (1970), Foundations of micropolar thermoelasticity, Course of lectures No. 23, CSIM Udine Springer.
  8. Eringen, A.C. (1984), "Plane waves in nonlocal micropolar elasticity", Int. J. Eng. Sci., 22,1113-1121. https://doi.org/10.1016/0020-7225(84)90112-5
  9. Eringen, A.C. (1992), "Balance laws of micromorphic continua", Int. J. Eng. Sci., 30, 805-810. https://doi.org/10.1016/0020-7225(92)90109-T
  10. Eringen, A.C. (1999), Microcontinum field theories I-foundations and solids, Springer-Verlag, New York.
  11. Eringen, A.C., (2001), Microcontinum field theories II-fluent media, Springer-Verlag, New York.
  12. Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elasticity, 31, 189-208. https://doi.org/10.1007/BF00044969
  13. Maugin, G.A. and Mild, A. (1986), "Solitary waves in micropolar elastic crystals", Int. J. Eng. Sci., 24, 1477- 1499. https://doi.org/10.1016/0020-7225(86)90158-8
  14. Nowacki, W. (1966), "Couple stress in the theory of thermoelasticity", Proc. ITUAM Symposia,Vienna, Editors H. Parkus and L.I. Sedov, Springer-Verlag, 259-278.
  15. Tauchert, T.R., Claus, W.D. and Ariman, T. (1968), "The linear theory of micropolar thermoelasticity", Int. J. Eng. Sci., 6, 37-47. https://doi.org/10.1016/0020-7225(68)90037-2

Cited by

  1. Influence of impulsive line source and non-homogeneity on the propagation of SH-wave in an isotropic medium vol.6, pp.3, 2013, https://doi.org/10.12989/imm.2013.6.3.287
  2. Analysis of wave motion in an anisotropic initially stressed fiber-reinforced thermoelastic medium vol.4, pp.1, 2010, https://doi.org/10.12989/eas.2013.4.1.001
  3. Torsional surface waves in a non-homogeneous isotropic layer over viscoelastic half-space vol.6, pp.1, 2010, https://doi.org/10.12989/imm.2013.6.1.001
  4. Theoretical analysis of transient wave propagation in the band gap of phononic system vol.6, pp.1, 2013, https://doi.org/10.12989/imm.2013.6.1.015
  5. Study of viscoelastic model for harmonic waves in non-homogeneous viscoelastic filaments vol.6, pp.1, 2010, https://doi.org/10.12989/imm.2013.6.1.031
  6. Response of Thermoelastic Interactions in Micropolar Porous Circular Plate with Three Phase Lag Model vol.22, pp.4, 2010, https://doi.org/10.2478/mme-2018-0080