References
- Chandershekharia, D.S. (1986), "Heat flux dependent micropolar thermoelasticity", Int. J. Eng. Sci., 24, 1389- 1395. https://doi.org/10.1016/0020-7225(86)90067-4
- Chandrasekharaiah, D.S. and Srinath, K.S. (1996), "One-dimensional waves in a thermoelastic half-space without energy dissipation", Int. J. Eng. Sci., 34, 1447-1455. https://doi.org/10.1016/0020-7225(96)00034-1
- Dhaliwal, R.S. and Singh, A. (1987), Micropolar thermoelasticity, in: R. Hetnarski (Ed.), Thermal stresses II, Mechanical and Mathematical Methods, Ser. 2, North-Holland.
- Dost, S. and Tabarrak, B. (1978), "Generalised micropolar thermoelasticity", Int. J. Eng. Sci., 16, 173-183. https://doi.org/10.1016/0020-7225(78)90046-0
- Dyszlewicz, Janusz (2003), Micropolar theory of elasticity, Lecture notes in applied and computational mechanics.
- Eringen, A.C. (1968), Theory of micropolar elasticity, In Fracture, ed. H. Liebowitz, Vol. II. Academic Press, New York.
- Eringen, A.C. (1970), Foundations of micropolar thermoelasticity, Course of lectures No. 23, CSIM Udine Springer.
- Eringen, A.C. (1984), "Plane waves in nonlocal micropolar elasticity", Int. J. Eng. Sci., 22,1113-1121. https://doi.org/10.1016/0020-7225(84)90112-5
- Eringen, A.C. (1992), "Balance laws of micromorphic continua", Int. J. Eng. Sci., 30, 805-810. https://doi.org/10.1016/0020-7225(92)90109-T
- Eringen, A.C. (1999), Microcontinum field theories I-foundations and solids, Springer-Verlag, New York.
- Eringen, A.C., (2001), Microcontinum field theories II-fluent media, Springer-Verlag, New York.
- Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elasticity, 31, 189-208. https://doi.org/10.1007/BF00044969
- Maugin, G.A. and Mild, A. (1986), "Solitary waves in micropolar elastic crystals", Int. J. Eng. Sci., 24, 1477- 1499. https://doi.org/10.1016/0020-7225(86)90158-8
- Nowacki, W. (1966), "Couple stress in the theory of thermoelasticity", Proc. ITUAM Symposia,Vienna, Editors H. Parkus and L.I. Sedov, Springer-Verlag, 259-278.
- Tauchert, T.R., Claus, W.D. and Ariman, T. (1968), "The linear theory of micropolar thermoelasticity", Int. J. Eng. Sci., 6, 37-47. https://doi.org/10.1016/0020-7225(68)90037-2
Cited by
- Influence of impulsive line source and non-homogeneity on the propagation of SH-wave in an isotropic medium vol.6, pp.3, 2013, https://doi.org/10.12989/imm.2013.6.3.287
- Analysis of wave motion in an anisotropic initially stressed fiber-reinforced thermoelastic medium vol.4, pp.1, 2010, https://doi.org/10.12989/eas.2013.4.1.001
- Torsional surface waves in a non-homogeneous isotropic layer over viscoelastic half-space vol.6, pp.1, 2010, https://doi.org/10.12989/imm.2013.6.1.001
- Theoretical analysis of transient wave propagation in the band gap of phononic system vol.6, pp.1, 2013, https://doi.org/10.12989/imm.2013.6.1.015
- Study of viscoelastic model for harmonic waves in non-homogeneous viscoelastic filaments vol.6, pp.1, 2010, https://doi.org/10.12989/imm.2013.6.1.031
- Response of Thermoelastic Interactions in Micropolar Porous Circular Plate with Three Phase Lag Model vol.22, pp.4, 2010, https://doi.org/10.2478/mme-2018-0080