DOI QR코드

DOI QR Code

Moving load response in a rotating generalized thermoelastic medium

  • 투고 : 2009.11.20
  • 심사 : 2010.02.13
  • 발행 : 2010.03.25

초록

The steady state response of a rotating generalized thermoelastic solid to a moving point load has been investigated. The transformed components of displacement, force stress and temperature distribution are obtained by using Fourier transformation. These components are then inverted and the results are obtained in the physical domain by applying a numerical inversion method. The numerical results are presented graphically for a particular model. A particular result is also deduced from the present investigation.

키워드

참고문헌

  1. Ailawalia, P., Narah, N.S. and Kumar, R. (2009), "Effect of rotation due to various sources at the interface of elastic half space and generalized thermoelastic half space", Int. J. Appl. Math. Mech., 5(1), 68-88.
  2. Brock, L.M and Rodgers, M.J. (1997), "Steady state response of thermoelastic half space to the rapid motion of surface thermal/mechanical loads", J. Elasticity, 47(3), 225-240. https://doi.org/10.1023/A:1007425924987
  3. Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity: A review of recent literature", Appl. Mech. Rev. 51, 705-729. https://doi.org/10.1115/1.3098984
  4. Chand, D, Sharma, J.N and Sud, S.P. (1990), "Transient generalized magneto-thermoelastic waves in a rotating half space", Int. J. Eng. Sci, 28, 547-556. https://doi.org/10.1016/0020-7225(90)90057-P
  5. Clarke, N.S. and Burdness, J.S. (1994), "Rayleigh waves on a rotating surface", J. Appl. Mech. ASME, 61, 724-726. https://doi.org/10.1115/1.2901524
  6. Cole, J. and Huth, J. (1958), "Stresses produced in a half space by moving loads", J. Appl. Mech. ASME, 25, 433-436.
  7. Destrade, M. (2004), "Surface waves in rotating rhombic crystal", Proc. Roy. Soc. London, Ser. A, 460, 653-665. https://doi.org/10.1098/rspa.2003.1192
  8. Dhailwal, R.S. and Singh, A. (1980), Dynamic coupled thermoelasticity, Hindustan Publisher Corp., New Delhi.
  9. Eason, G. (1965), "The stresses produced in a semi-infinite solid by moving surface force", Int. J. Eng. Sci. 2, 581-609. https://doi.org/10.1016/0020-7225(65)90038-8
  10. Fung, Y.C. (1968), Foundations of solid mechanics, Prentice Hall, New Delhi.
  11. Frydrychowicz, W. and Singh, M.C. (1981), "Subsonic steady motion of a uniform load over the surface of a thermoelastic half space", Numerical methods in thermal problems, Vol. 2, Proceedings of the 2nd International Conference, Venice.
  12. Fryba, L. (1999), Vibration of solids and structures under moving loads, Thomas Telford, London.
  13. Green, A.E. and Laws, N. (1972), "On the entropy production inequality", Arch. Ration. Mech. An., 45, 47-53.
  14. Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elasticity, 2, 1-7. https://doi.org/10.1007/BF00045689
  15. Green, A.E. and Naghdi, P.M. (1993), "On thermoelasticity without energy dissipation", J. Elasticity, 31, 189-208. https://doi.org/10.1007/BF00044969
  16. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phy. Solids, 15, 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
  17. Lykotrafitis, G. and Georgiadis, H.G. (2003), The three dimensional steady state thermo-elastodynamic problem of moving sources over a half space", Int. J. Solids Struct., 40(4), 899-940. https://doi.org/10.1016/S0020-7683(02)00613-3
  18. Muller, I.M. (1971), "The coldness, a universal function in thermoelastic bodies", Arch. Ration. Mech. An., 41, 319-332.
  19. Othman, M.I.A. and Song, Y. (2008), "Effect of rotation on plane waves of generalized electro-magneto-thermoviscoelasticity with two relaxation times", Appl. Math. Model., 32, 811-825. https://doi.org/10.1016/j.apm.2007.02.025
  20. Payton, R.G. (1967), "Transient motion of an elastic half-space due to a moving surface line load", Int. J. Eng. Sci. 5, 49-79. https://doi.org/10.1016/0020-7225(67)90054-7
  21. Schoenberg, M. and Censor, D. (1973), "Elastic waves in rotating media", Quart. Appl. Math. 31, 115-125. https://doi.org/10.1090/qam/99708
  22. Sharma, J.N. and Othman, M.I.A. (2007a), "Effect of rotation on generalized thermo-viscoelastic Rayleigh-Lamb waves", Int. J. Solids Struct., 44, 4243-4255. https://doi.org/10.1016/j.ijsolstr.2006.11.016
  23. Sharma, J.N., Sharma, P.K. and Gupta, S.K. (2004), "Steady state response to moving loads in thermoelastic solid media", J. Therm. Stresses, 27(10), 931-951. https://doi.org/10.1080/01495730490440181
  24. Sharma, J.N and Thakur, M,D. (2006), "Effect of rotation on Rayleigh-Lamb waves in magneto-thermoelastic media", J. Sound Vib., 296, 871-887. https://doi.org/10.1016/j.jsv.2006.03.014
  25. Sharma, J.N. and Walia, V. (2007b), "Effect of rotation on Rayleigh-Lamb waves in piezothermoelastic half space", Int. J. Solids Struct. 44, 1060-1072. https://doi.org/10.1016/j.ijsolstr.2006.06.005
  26. Sharma, J.N, Walia, V. and Gupta, S.K. (2008), "Effect of rotation and thermal relaxation on Rayleigh waves in piezothermoelastic half space", Int. J. Mech. Sci., 50(3), 433-444. https://doi.org/10.1016/j.ijmecsci.2007.10.001
  27. Stroh, A.N. (1962), "Steady state problems in anisotropic elasticity", J. Math. Phy. 41, 77-103. https://doi.org/10.1002/sapm196241177
  28. Sneddon, E.S. (1951), Fourier transforms, McGraw Hill, New York.
  29. Suhubi, E.S. (1975), Thermoelastic solids in continuum physics, (Ed. Eringen, A.C.), Vol. II, Part II, Chapter II, Academic Press, Newyork.
  30. Ting, T.C.T. (2004), "Surface waves in a rotating anisotropic elastic half-space", Wave Motion, 40, 329-346. https://doi.org/10.1016/j.wavemoti.2003.10.005

피인용 문헌

  1. Effect of hydrostatic initial stress and rotation in Green‐Naghdi (type III) thermoelastic half‐space vol.7, pp.2, 2011, https://doi.org/10.1108/15736101111157082