References
- Ailawalia, P., Narah, N.S. and Kumar, R. (2009), "Effect of rotation due to various sources at the interface of elastic half space and generalized thermoelastic half space", Int. J. Appl. Math. Mech., 5(1), 68-88.
- Brock, L.M and Rodgers, M.J. (1997), "Steady state response of thermoelastic half space to the rapid motion of surface thermal/mechanical loads", J. Elasticity, 47(3), 225-240. https://doi.org/10.1023/A:1007425924987
- Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity: A review of recent literature", Appl. Mech. Rev. 51, 705-729. https://doi.org/10.1115/1.3098984
- Chand, D, Sharma, J.N and Sud, S.P. (1990), "Transient generalized magneto-thermoelastic waves in a rotating half space", Int. J. Eng. Sci, 28, 547-556. https://doi.org/10.1016/0020-7225(90)90057-P
- Clarke, N.S. and Burdness, J.S. (1994), "Rayleigh waves on a rotating surface", J. Appl. Mech. ASME, 61, 724-726. https://doi.org/10.1115/1.2901524
- Cole, J. and Huth, J. (1958), "Stresses produced in a half space by moving loads", J. Appl. Mech. ASME, 25, 433-436.
- Destrade, M. (2004), "Surface waves in rotating rhombic crystal", Proc. Roy. Soc. London, Ser. A, 460, 653-665. https://doi.org/10.1098/rspa.2003.1192
- Dhailwal, R.S. and Singh, A. (1980), Dynamic coupled thermoelasticity, Hindustan Publisher Corp., New Delhi.
- Eason, G. (1965), "The stresses produced in a semi-infinite solid by moving surface force", Int. J. Eng. Sci. 2, 581-609. https://doi.org/10.1016/0020-7225(65)90038-8
- Fung, Y.C. (1968), Foundations of solid mechanics, Prentice Hall, New Delhi.
- Frydrychowicz, W. and Singh, M.C. (1981), "Subsonic steady motion of a uniform load over the surface of a thermoelastic half space", Numerical methods in thermal problems, Vol. 2, Proceedings of the 2nd International Conference, Venice.
- Fryba, L. (1999), Vibration of solids and structures under moving loads, Thomas Telford, London.
- Green, A.E. and Laws, N. (1972), "On the entropy production inequality", Arch. Ration. Mech. An., 45, 47-53.
- Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elasticity, 2, 1-7. https://doi.org/10.1007/BF00045689
- Green, A.E. and Naghdi, P.M. (1993), "On thermoelasticity without energy dissipation", J. Elasticity, 31, 189-208. https://doi.org/10.1007/BF00044969
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phy. Solids, 15, 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- Lykotrafitis, G. and Georgiadis, H.G. (2003), The three dimensional steady state thermo-elastodynamic problem of moving sources over a half space", Int. J. Solids Struct., 40(4), 899-940. https://doi.org/10.1016/S0020-7683(02)00613-3
- Muller, I.M. (1971), "The coldness, a universal function in thermoelastic bodies", Arch. Ration. Mech. An., 41, 319-332.
- Othman, M.I.A. and Song, Y. (2008), "Effect of rotation on plane waves of generalized electro-magneto-thermoviscoelasticity with two relaxation times", Appl. Math. Model., 32, 811-825. https://doi.org/10.1016/j.apm.2007.02.025
- Payton, R.G. (1967), "Transient motion of an elastic half-space due to a moving surface line load", Int. J. Eng. Sci. 5, 49-79. https://doi.org/10.1016/0020-7225(67)90054-7
- Schoenberg, M. and Censor, D. (1973), "Elastic waves in rotating media", Quart. Appl. Math. 31, 115-125. https://doi.org/10.1090/qam/99708
- Sharma, J.N. and Othman, M.I.A. (2007a), "Effect of rotation on generalized thermo-viscoelastic Rayleigh-Lamb waves", Int. J. Solids Struct., 44, 4243-4255. https://doi.org/10.1016/j.ijsolstr.2006.11.016
- Sharma, J.N., Sharma, P.K. and Gupta, S.K. (2004), "Steady state response to moving loads in thermoelastic solid media", J. Therm. Stresses, 27(10), 931-951. https://doi.org/10.1080/01495730490440181
- Sharma, J.N and Thakur, M,D. (2006), "Effect of rotation on Rayleigh-Lamb waves in magneto-thermoelastic media", J. Sound Vib., 296, 871-887. https://doi.org/10.1016/j.jsv.2006.03.014
- Sharma, J.N. and Walia, V. (2007b), "Effect of rotation on Rayleigh-Lamb waves in piezothermoelastic half space", Int. J. Solids Struct. 44, 1060-1072. https://doi.org/10.1016/j.ijsolstr.2006.06.005
- Sharma, J.N, Walia, V. and Gupta, S.K. (2008), "Effect of rotation and thermal relaxation on Rayleigh waves in piezothermoelastic half space", Int. J. Mech. Sci., 50(3), 433-444. https://doi.org/10.1016/j.ijmecsci.2007.10.001
- Stroh, A.N. (1962), "Steady state problems in anisotropic elasticity", J. Math. Phy. 41, 77-103. https://doi.org/10.1002/sapm196241177
- Sneddon, E.S. (1951), Fourier transforms, McGraw Hill, New York.
- Suhubi, E.S. (1975), Thermoelastic solids in continuum physics, (Ed. Eringen, A.C.), Vol. II, Part II, Chapter II, Academic Press, Newyork.
- Ting, T.C.T. (2004), "Surface waves in a rotating anisotropic elastic half-space", Wave Motion, 40, 329-346. https://doi.org/10.1016/j.wavemoti.2003.10.005
Cited by
- Effect of hydrostatic initial stress and rotation in Green‐Naghdi (type III) thermoelastic half‐space vol.7, pp.2, 2011, https://doi.org/10.1108/15736101111157082