DOI QR코드

DOI QR Code

Mesoscopic numerical analysis of reinforced concrete beams using a modified micro truss model

  • Nagarajan, Praveen (Department of Civil Engineering, National Institute of Technology Calicut, NIT Campus P.O.) ;
  • Jayadeep, U.B. (Department of Mechanical Engineering, National Institute of Technology Calicut, NIT Campus P.O.) ;
  • Madhavan Pillai, T.M. (Department of Civil Engineering, National Institute of Technology Calicut, NIT Campus P.O.)
  • Received : 2010.01.14
  • Accepted : 2010.01.20
  • Published : 2010.03.25

Abstract

Concrete is a heterogeneous material consisting of coarse aggregate, mortar matrix and interfacial zones at the meso level. Though studies have been done to interpret the fracture process in concrete using meso level models, not much work has been done for simulating the macroscopic behaviour of reinforced concrete structures using the meso level models. This paper presents a procedure for the mesoscopic analysis of reinforced concrete beams using a modified micro truss model. The micro truss model is derived based on the framework method and uses the lattice meshes for representing the coarse aggregate (CA), mortar matrix, interfacial zones and reinforcement bars. A simple procedure for generating a random aggregate structure is developed using the constitutive model at meso level. The study reveals the potential of the mesoscopic numerical simulation using a modified micro truss model to predict the nonlinear response of reinforced concrete structures. The modified micro truss model correctly predicts the load-deflection behaviour, crack pattern and ultimate load of reinforced concrete beams failing under different failure modes.

Keywords

References

  1. Arslan, A., Ince, R. and Karihaloo, B.L. (2002), "Improved lattice model for concrete fracture", J. Eng. Mech-ASCE, 128(1), 57-65. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:1(57)
  2. Asai, M., Terada, K., Ikeda, K., Suyama, H. and Fuji, K. (2003), "Meso-scopic numerical analysis of concrete structures by a modified lattice model", Stuct. Eng. Earthq. Eng., 731, 1-12.
  3. Bazant, Z.P., Tabbara, M.R., Kazemi, M.T. and Cabot, G.P. (1990), "Random particle model for fracture of aggregate or fiber composites", J. Eng. Mech-ASCE, 116(8), 1686-1705. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1686)
  4. Chiaia, B., Vervuurt, A. and Van Mier, J.G.M. (1997), "Lattice model evaluation of progressive failure in disordered particle composites", Eng. Fract. Mech., 57(2/3), 301-318. https://doi.org/10.1016/S0013-7944(97)00011-8
  5. Cusatis, G. (2001), Tridimensional Random Particle Model for Concrete, PhD Thesis, Politecnico di Milano.
  6. Hrennikoff, A. (1941), "Solutions of problems of elasticity by the framework method", J. Appl. Mech., A169-175.
  7. Ince, R., Arslan, A. and Karihaloo, B.L. (2003), "Lattice modelling of size effect in concrete strength", Eng. Fract. Mech., 70, 2307-2320. https://doi.org/10.1016/S0013-7944(02)00219-9
  8. Karihaloo, B.L., Shao, P.F. and Xiao, Q.Z. (2003), "Lattice modelling of fracture of particle composites", Eng. Fract. Mech., 70, 2385-2406. https://doi.org/10.1016/S0013-7944(03)00004-3
  9. Kotronis, P., Mazars, J. and Davenne, L. (2003), "The equivalent reinforced concrete model for simulating the behaviour of walls under dynamic shear loading", Eng. Fract. Mech., 70, 1085-1097. https://doi.org/10.1016/S0013-7944(02)00167-4
  10. Kwan, A.K.H., Wang, Z.M. and Chan, H.C. (1999), "Mesoscopic study of concrete II: nonlinear finite element analysis", Comput. Struct., 70, 545-556. https://doi.org/10.1016/S0045-7949(98)00178-3
  11. Leite, J.P.B., Slowik, V. and Mihashi, H. (2004), "Computer simulation of fracture processes of concrete using mesolevel models of lattice structures", Cement Concrete Res., 34, 1025-1033. https://doi.org/10.1016/j.cemconres.2003.11.011
  12. Lilliu, G. and Van Mier, J.G.M. (2003), "3D lattice type fracture model for concrete", Eng. Fract. Mech., 70, 927-941. https://doi.org/10.1016/S0013-7944(02)00158-3
  13. Nagai, K., Sato, Y. and Ueda, T. (2004), "Mesoscopic simulation of failure of mortar and concrete by 2D RBSM", J. Adv. Concrete Tech., 2(3), 359-374. https://doi.org/10.3151/jact.2.359
  14. Nagai, K., Sato, Y. and Ueda, T. (2005), "Mesoscopic simulation of failure of mortar and concrete by 3D RBSM", J. Adv. Concrete Tech., 3(3), 385-402. https://doi.org/10.3151/jact.3.385
  15. Park, R. and Paulay, T. (1975), Reinforced Concrete Structures, John Wiley and Sons, New York.
  16. Prasad, B.K.R., Bhattacharya, G.S. and Mihashi, H. (1994), "Size effect in notched concrete plate under plane stress-a lattice model", Int. J. Fract., 67, R3-R8. https://doi.org/10.1007/BF00032368
  17. Prasad, B.K.R. and Sagar, R.V. (2006), "Numerical modelling of fracture and size effect in plain concrete", J. Institut. Eng. (India), 86(2), 182-186.
  18. Revathy, P. and Menon, D. (2005), "Nonlinear finite element analysis of reinforced concrete beams", J. Struct. Eng., 32(2), 135-137.
  19. Roelfstra, P.E. (1989), A Numerical Approach to Investigate the Properties of Concrete-Numerical Concrete, PhD Thesis, EPFL, Lausanne.
  20. Salem, H.M. (2004), "The micro truss model: an innovative rational design approach for reinforced concrete", J. Adv. Concrete Tech., 2(1), 77-87. https://doi.org/10.3151/jact.2.77
  21. Schlangen, E. and Van Mier, J.G.M. (1992), "Experimental and numerical analysis of micromechanisms of fracture of cement-based composites", Cement Concrete Comp., 14, 105-118. https://doi.org/10.1016/0958-9465(92)90004-F
  22. Schlangen, E. (1993), Experimental and Numerical Analysis of Fracture Process in Concrete, PhD Thesis, Delft University of Technology.
  23. Schlangen, E. and Garboczi, E.J. (1997), "Fracture simulations of concrete using lattice models: computational aspects", Eng. Fract. Mech., 57(2/3), 319-332. https://doi.org/10.1016/S0013-7944(97)00010-6
  24. Van Mier, J.G.M., Van Vliet, M.R.A. and Wang, T.K. (2002), "Fracture mechanisms in particle composites: statistical aspects in lattice type analysis", Mech. Mater., 34, 705-724. https://doi.org/10.1016/S0167-6636(02)00170-9
  25. Zaitsev, Y.B. and Wittmann, F.H. (1981), "Simulation of crack propagation and failure of concrete", Mater. Construct., 14, 357-365. https://doi.org/10.1007/BF02478729
  26. Zhu, W.C. and Tang, C.A. (2002), "Numerical simulation on shear fracture process of concrete using mesoscopic mechanical model", Constr. Build. Mater., 16, 453-463. https://doi.org/10.1016/S0950-0618(02)00096-X

Cited by

  1. Inelastic stability analysis of high strength rectangular concrete-filled steel tubular slender beam-columns vol.5, pp.2, 2012, https://doi.org/10.12989/imm.2012.5.2.091