References
- Truesdell, C. (1972), A first course in rational mechanics, Baltimore, Maryland.
- Truesdell, C. and Noll, W. (1965), The nonlinear field theories of mechanics, (Ed. Fluugge, S.), Handbuch der Physik, III/3, Springer, Berlin.
- Gurtin, M.E. and Williams, W.O. (1967), "An axiomatic foundations for continuum thermodynamics", Arch. Ration. Mech. An., 26, 83-117. https://doi.org/10.1007/BF00285676
- Williams, W.O. (1971), "Axioms for work and energy in general continua I", Arch. Ration. Mech. An., 42(2), 93-114.
- Williams, W.O. (1971), "Axioms for work and energy in general continua II", Arch. Ration. Mech. An., 49(3), 225-240.
- Noll, W. (1973), "Lectures on the foundations of continuum mechanics and thermodynamics", Arch. Ration. Mech. An., 52(1), 62-69.
- Mura, T. (1982), Micromechanics of defects in solids, Martinus Nijhoff Publishers.
- Nemat-Nasser, S. and Hori, M. (1999), Micromechanics: overall properties of heterogeneous materials, Elsevier.
- Chen, J.S. and Mehraeen, S. (2005), "Multi-scale modelling of heterogeneous materials with fixed and evolving microstructures", Model. Simul. Mater. Sc., 13, 95-121. https://doi.org/10.1088/0965-0393/13/1/007
- Zhang, X., Mehraeen, S., Chen, J.S. and Ghoniem, N. (2006), "Multiscale total lagrangian formulation for modelling dislocation-induced plastic deformation in polycrystalline materials", Int. J. Multiscale Com., 4(1), 1-17. https://doi.org/10.1615/IntJMultCompEng.v4.i1.10
- Kosinski, W. (1985), Field singularities and waves analysis in continuum mechanics, Ellis Horwood Limited and PWN-Polish Scientific Publishers, Warsaw.
- Oden, J.T. and Reddy, J.N. (1976), An introduction to the mathematical theory of finite elements, John Wiley & Sons.
- Kaczmarek, J. (2002), "Concept of a formal system aimed at modelling biological processes in cell", Comput. Method. Sci. Technol., 8(1), 31-62. https://doi.org/10.12921/cmst.2002.08.01.31-62
- Kaczmarek, J. (2003), "A nanoscale model of crystal plasticity", Int. J. Plasticity, 19, 1585-1603. https://doi.org/10.1016/S0749-6419(02)00037-2
- Kaczmarek, J. (1994), "A model of the free energy for materials which undergo martensitic phase transformations with shuffles", Int. J. Eng. Sci., 32(2), 369-384. https://doi.org/10.1016/0020-7225(94)90016-7
- Kaczmarek, J. (1998), "A thermodynamical description of the martensitic transformation. A model with small volume of averaging", Arch. Mech., 50(1), 53-81.
- Kaczmarek, J. (2001), "A nanoscale model of the transformation-induced plasticity", Tran. Institute F-Flow Machin., 108, 5-32.
- Kaczmarek, J. and Ostachowicz, W. (2005), "A description of damage based on nanoscale modelling of fracture", Key Eng. Mater., Vols. 293-294, 235-244. https://doi.org/10.4028/www.scientific.net/KEM.293-294.235
- Kaczmarek, J. (2002), "A method of integration of molecular dynamics and continuum mechanics for solids", TASK Quaterly, 6(2), 253-271.
Cited by
- Quantity vs. Quality in the Model Order Reduction (MOR) of a Linear System vol.13, pp.1, 2014, https://doi.org/10.12989/sss.2014.13.1.099
- A method of multiscale modelling considered as a way leading to unified mechanics of materials vol.226, pp.5, 2015, https://doi.org/10.1007/s00707-014-1261-7
- Problems Associated with Transferring of Engineering to Small Scale - Towards Theoretical Nanotechnology vol.130, pp.6, 2016, https://doi.org/10.12693/APhysPolA.130.1295
- Assessment of Prestress Force in Bridges Using Structural Dynamic Responses under Moving Vehicles vol.2013, 2013, https://doi.org/10.1155/2013/435939
- Multiscale modeling of the anisotropic shock response of β-HMX molecular polycrystals vol.4, pp.2, 2010, https://doi.org/10.12989/imm.2011.4.2.139