Soil-to-Rice Seeds Transfer Factors of Radioiodine and Technetium for Paddy Fields around the Radioactive-Waste Disposal Site in Gyeongju

경주 방사성 폐기물 처분장 주변 논에 대한 방사성 요오드와 테크네튬의 토양-쌀알 전이계수

  • Received : 2010.02.19
  • Accepted : 2010.11.02
  • Published : 2010.12.31

Abstract

Radiotracer experiments were performed over two years using pot cultures in a greenhouse to investigate soil-torice seeds transfer factors of radioiodine and technetium for paddy fields around the radioactive-waste disposal site in Gyeongju. Before transplanting rice seedlings, the top about 20 cm soils were thoroughly mixed with $^{125}I$ (2007) and $^{99}Tc$ (2008), and the pots were irrigated to simulate flooded rice fields. Transfer factors were determined as the ratios of the radionuclide concentrations in dry rice seeds (brown rice) to those in dry soils. Transfer factors of radioiodine and technetium were in the ranges of $1.1{\times}10^{-3}{\sim}6.4{\times}10^{-3}$ (three soils) and $5.4{\times}10^{-4}{\sim}2.5{\times}10^{-3}$ (four soils), respectively, for different soils. It seems that the differences in the clay content among soils played a more important role for such variations than those in the organic matter content and pH. As the representative values of radioiodine and technetium transfer factors for rice seeds, $2.9{\times}10^{-3}$ and $1.1{\times}10^{-3}$, respectively, were proposed. In order to obtain more highly representative values in the future, investigations for the sites of interest need to be carried out continuously.

경주 방사성 폐기물 처분장 주변 논에 대한 방사성 요오드 및 테크네튬의 토양-쌀알 전이계수를 조사하기 위하여 온실 내에서 포트재배로 방사성 추적자 실험을 2 년에 걸쳐 수행하였다. 모내기 전에 상부 약20 cm 깊이의 흙을 $^{125}I$(2007 년) 및 $^{99}Tc$(2008 년)와 고르게 혼합한 다음 포트에 관개하여 물이 찬 논같이 만들었다. 전이계수는 토양 중 방사성 핵종 농도에 대한 쌀알(현미) 내 농도의 비로 나타내었다. 쌀알의 방사성 요오드 및 테크네튬 전이계수는 토양에 따라 각각 $1.1{\times}10^{-3}{\sim}6.4{\times}10^{-3}$(세 토양) 및 $5.4{\times}10^{-4}{\sim}2.5{\times}10^{-3}$(네 토양)의 범위였다. 이러한 변이에 대해서는 토양 간 점토 함량의 차이가 유기물 함량이나 pH의 차이보다 중요한 역할을 한 것으로 보였다. 쌀알의 방사성 요오드 및 테크네튬 전이계수의 대표치로서 각각 $2.9{\times}10^{-3}$$1.1{\times}10^{-3}$이 제안되었다. 앞으로 보다 대표성이 높은 값을 얻기 위하여 관심 부지들을 대상으로 조사가 지속적으로 수행될 필요가 있다.

Keywords

References

  1. International Atomic Energy Agency, Generic Models and Parameters for Assessing the Environmental Transfer of Radionuclides from Routine Releases, Safety Series No. 57, IAEA, Vienna (1982).
  2. J. E. Till and H.R. Meyer, Radiological Assessment, U. S. Nuclear Regulatory Commission, NUREG/CR-3332, ORNL-5968 (1983).
  3. International Atomic Energy Agency, Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments, Technical Reports Series No. 472, IAEA, Vienna (2010).
  4. 최용호, 임광묵, 황원태, 최근식, 최희주, 이창우, 가동중 원자력 시설 주변 주민의 내부피폭선량 계산을 위한 농산물 내 핵종 농도 평가법 개선, 대한방사선방어학회지, 29, pp. 73-90 (2004).
  5. T. Shinonaga, M.H. Gerzabek, F. Streble and Y. Muramatsu, Transfer of iodine from soil to cereal grains in agricultural areas of Austria, Sci. Total Environ., 267, pp. 33-40 (2001). https://doi.org/10.1016/S0048-9697(00)00764-6
  6. R. Bennett and N. Willey, Soil availability, plant uptake and soil to plant transfer of 99Tc - A review, J. Environ. Radioactivity, 65, pp. 215-231 (2003). https://doi.org/10.1016/S0265-931X(02)00098-X
  7. H. Velasco, J. Juri Ayub and U. Sansone, Influence of crop types and soil properties on radionuclide soil-to-pant transfer factors in tropical and subtropical environments, J. Environ. Radioactivity, 100, pp. 733-738 (2009). https://doi.org/10.1016/j.jenvrad.2008.12.014
  8. S. Uchida, K. Tagami, Z.R. Shang and Y.H. Choi, Uptake of radionuclides and stable elements from paddy soil to rice: a review, J. Environ. Radioactivity, 100, pp. 739-745 (2009). https://doi.org/10.1016/j.jenvrad.2008.10.008
  9. T. J. D'souza and K. B. Mistry, Absorption of gamma-emitting fission products and activation products by rice under flooded and unflooded conditions from two tropical soils. Plant and Soil 55, 189-198 (1980). https://doi.org/10.1007/BF02181798
  10. C. Myttenaere, P. Bourdeau and M. Masset, Relative importance of soil and water in the indirect contamination of flooded rice with radiocesium. Health Physics 16, 701-707 (1969). https://doi.org/10.1097/00004032-196906000-00004
  11. A. Tsumura, M. Komamura and H. Kobayashi, Behavior of radioactive Sr and Cs in soils and soil-plant system, in: Report of National Institute of Agricultural Science-B. No 36, 57-113 (in Japanese) (1984).
  12. 최용호 등, 한국인의 섭취 피폭선량 평가를 위한 농작물 핵종 이동인자, 기술보고서, KAERI/TR-1993/2001, 한국원자력연구소 (2001).
  13. S. C. Sheppard, Interpolation of solid/liquid partition coefficients, Kd, for iodine in soils, J. Environ. Radioactivity, 70, pp. 21-27 (2003). https://doi.org/10.1016/S0265-931X(03)00129-2
  14. 성석현, 정의영, 김기홍, "국내 방사성폐기물 특성과 방사성폐기물 처분시설 폐기물 인수기준,"방사성폐기물학회지, 6, pp. 347-356 (2008).
  15. 이창우, 정근호, 조영현, 강문자, 이완로, 김희령, 최근 식, "한국 토양의 99Tc 분석 및 방사능 농도 준위,"방사성폐기물학회지, 7, pp. 25-31 (2009).
  16. 이은웅, 수도작, 향문사, 서울 (1996)
  17. F. Wigley, P.E. Warwick, I.W. Croudace, J. Caborn and A.L. Sanchez, Optimised method of the routine determination of technetium-99 in environmental samples by liquid scintillation counting, Analytica Chimica Acta, 380, pp. 73-82 (1999). https://doi.org/10.1016/S0003-2670(98)00676-X
  18. D.J. Ashworth, G. Shaw, A.P. Butler and L. Ciciani, Soil transport and plant uptake of radioiodine from near-surface groundwater, J. Environ. Radioactivity, 70, pp. 99-114 (2003). https://doi.org/10.1016/S0265-931X(03)00121-8
  19. N. Yamaguchi, M. Nakano, R. Takamatsu and H. Tanida, Inorganic iodine incorporation into soil organic matter: evidence from iodine K-edge X-ray absorption near-edge structure, J. Environ. Radioactivity, in press (2009).
  20. S. Yoshida, Y. Muramatsu and S. Uchida, Studies on the sorption of $I^-$ (iodide) and $IO_3^\amalg-$ (iodate) onto Andosols, Water, Air and Soil Pollution, 63, pp. 321-329 (1992). https://doi.org/10.1007/BF00475499
  21. Y. Muramatsu, S. Yoshida, S. Uchida and S. Hasebe, Iodine desorption from rice paddy soil, Water, Air and Soil Pollution, 86, pp. 359-371 (1996). https://doi.org/10.1007/BF00279167
  22. H. Marschner, Mineral Nutrition in Higher Plants, Academic Press, London (1986)
  23. 조성진, 박천서, 엄대익, 토양학, 향문사, 서울 (1997).
  24. Y. Muramatsu, S. Uchida, M. Sumiya, Y. Ohmomo and H. Obata, Tracer experiments on transfer of radioiodine in the soil-rice plant system, Water, Air and Soil Pollution, 45, pp. 157-171 (1989).
  25. Y. Muramatsu, S. Uchida and Y. Ohmomo, Root uptake of radioiodine by rice plants, J. Radiation Research, 34, pp. 214-220 (1993). https://doi.org/10.1269/jrr.34.214
  26. S. C. Sheppard, M. I. Sheppard and W. G. Evenden, A novel method used to examine variation in technetium sorption among 34 soils, aerated and anoxic, J. Environ. Radioactivity, 11, pp. 215-233 (1990). https://doi.org/10.1016/0265-931X(90)90016-O
  27. G. Echevarria, P.C. Vong and J.L. Morel, Effect of $NO_3^-$ on the fate of $99TcO_4$ in the soil-plant system, J. Environ. Radioactivity, 38, pp. 163-171 (1998). https://doi.org/10.1016/S0265-931X(97)00032-5
  28. K. Tagami and S. Uchida, Chemical transformation of technetium in soil during the change of soil water conditions, Chemosphere, 38, pp. 963-971 (1999). https://doi.org/10.1016/S0045-6535(98)00361-0
  29. D.J. Ashworth and G. Shaw, Soil migration and plant uptake of technetium from a fluctuating water table, J. Environ. Radioactivity, 81, pp. 155-171 (2005). https://doi.org/10.1016/j.jenvrad.2004.01.033
  30. N. Ishii, H. Koiso, H. Takeda and S. Uchida, Environmental conditions for the formation of insoluble Tc in water ponds located above paddy fields, J. Environ. Radioactivity, 99, pp. 965-972 (2008). https://doi.org/10.1016/j.jenvrad.2007.11.008
  31. K. Yanagisawa, Y. Muramatsu and H. Kamada, Tracer experiments on the transfer of technetium from soil to rice and wheat plants, Radioisotopes, 41, pp. 397-402 (1992). https://doi.org/10.3769/radioisotopes.41.8_397
  32. K. Yanagisawa and Y. Muramatsu, Transfer of technetium from soil to paddy and upland rice, J. Radiation Research, 36, pp. 171-178 (1995). https://doi.org/10.1269/jrr.36.171
  33. S. Denys, G. Echevarria, L. Florentin, E. Leclerc- Cessac and J.-L. Morel, Availability of $^{99}TC$ in undisturbed soil cores, J. Environ. Radioactivity, 70, pp. 115-126 (2003). https://doi.org/10.1016/S0265-931X(03)00124-3
  34. H. Takagi, T. Kimura, H. Kobayashi, K. Iwashima and N. Yamagata, Transfer of iodine from paddy soil to rice grain, Hoken-Butsuri, 20, pp. 251-257 (in Japanese) (1985). https://doi.org/10.5453/jhps.20.251
  35. Y. Muramatsu, S. Yoshida, U. Fehn, S. Amachi and Y. Ohmomo, Studies with natural and anthropogenic iodine isotopes: iodine distribution and cycling in the global environment, J. Environ.Radioactivity, 74, pp. 221-232 (2004). https://doi.org/10.1016/j.jenvrad.2004.01.011
  36. W. Schimmack, U. Gerstmann, W. Schultz, M. Sommer, V. Tschopp and G. Zimmermann, Intracultivar variability of the soil-to-grain transfer of fallout $^{137}Cs$ and $^{90}Sr$ for winter wheat, J. Environ. Radioactivity, 94, pp. 16-30 (2007). https://doi.org/10.1016/j.jenvrad.2006.12.010
  37. International Atomic Energy Agency, Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments, IAEA-TECDOC-1616, IAEA, Vienna (2009).