Characteristics of Thermophilic Bacteria and Secondary Materials Attached on the Pyrrhotite, Uljin

울진 자류철석 표면에 부착한 고온성박테리아와 2차 생성물의 특성

  • Park, Cheon-Young (Department of Energy and Resource Engineering, Chosun University) ;
  • Kim, Bong-Ju (Department of Energy and Resource Engineering, Chosun University)
  • 박천엽 (조선대학교 공과대학 에너지자원공학과) ;
  • 김봉주 (조선대학교 공과대학 에너지자원공학과)
  • Received : 2010.11.13
  • Accepted : 2010.12.17
  • Published : 2010.12.30

Abstract

Characteristics of thermophilic bacteria and secondary materials on the pyrrhotite surface were investigated by using scanning electron microscopy (SEM). The thermophilic bacteria from an acid hot spring in Japan were incubated with pyrrhotite at $42^{\circ}C$, $52^{\circ}C$, and $62^{\circ}C$ respectively. SEM analysis of the reacted pyrrhotite showed that indigenous rod-shaped bacteria ranging from $0.4{\times}1.5{\mu}m$ to $0.3{\times}11.9{\mu}m$ in size were attached to the pyrrhotite surface at these temperatures with formation of secondary materials. Extracellular polymer substances were formed on the bacterial surface. We suggest that these polymers functioned as a capsule protecting bacteria from the extreme environment. Secondary materials such as elemental sulfur, Fe-hydroxide, S-Fe and O-P-Fe compounds were found on the pyrrhotite surface.

자류철석 표면에 부착한 고온성박테리아들과 이차 생성물을 전자현미경분석을 통하여 조사하였다. 일본 산성 온천수에서 채취된 고온성박테리아를 자류철석에 $42^{\circ}C$, $52^{\circ}C$, $62^{\circ}C$에 각각 접종하였다. 반응된 자류철석 표변에는 2차 생성물과 막대 모양의 박테리아들이 각각 부착하여 나타났다. 자류철석 표면에 부착한 박테리아들의 크기는 $0.4{\times}1.5{\mu}m$에서 $0.3{\times}11.9{\mu}m$ 범위였다. 박테리아들은 세포외중합체물질을 생성하는 것으로 관찰되었으며 이들 세포외중합체물질의 기능은 극한 환경으로부터 박테리아 자신을 보호하는 보호막 역할을 하는 것으로 추정되었다. 원소 황, 철수산화물, S와 Fe로 구성된 결정들, 그리고 O, P, Fe 결정들이 2차 생성물로 관찰되었다.

Keywords

References

  1. 박천영, 김순오, 김봉주 (2010) 42${^{\circ}C}$에서 토착호산성박테리아의 황철석 표면에 대한 선택적 부착과 용출 특성. 자원환경지질, 43, 109-121.
  2. 박천영, 정경훈, 김계민, 홍영의, 조강희 (2009) 화순 광산배수에 서식하는 토착 호산성 박테리아를 이용한 황 철석의 용출 특성, 한국지구시스템공학회지, 46, 521-535.
  3. 박천영, 조강희 (2009) 토착호산성박테리아의 황철석 표면 부착과 용출 특성. 한국지구시스템공학회지, 47, 51-60.
  4. 박천영, 조강희 (2010) 토착박테리아를 이용한 광산찌꺼기 황철석으로부터 유용금속 이온 용출 특성: 상온에서 칼럼 용출. 한국광물학회지, 23, 251-265.
  5. 이동진, 조경숙, 안종관, 박경호, 손정수, 정헌생 (2003) Thiobacillus ferrooxidans에 의한 황동석 정광의 침출 반응. 한국지구시스템공학회지, 40, 89-96.
  6. Ahonen, L. and Tuovinen, O.H. (1995) Bacterial leaching of complex sulfide ore samples in bench-scale column reactors. Hydrometallurgy, 37, 1-21. https://doi.org/10.1016/0304-386X(94)00011-Q
  7. Ahonen, L., Hiltunen, P., and Tuovinen, O.H. (1986) The role of pyrrhotite and pyrite in the bacterial leaching of chalcopyrite ores. In: Lawrence, R.W., Branion, R.M.R. and Ebner, H.G. (eds.), Fundamental and Applied Biohydrometallurgy, Elsevier, Amsterdam, 13-22.
  8. Attia, Y.A. and El-Zeky, M. (1990) Effects of galvanic interactions of sulfides on extraction of percious metals from refractory complex sulfides by bioleaching. International Journal of Mineral Processing, 30, 99-111. https://doi.org/10.1016/0301-7516(90)90068-A
  9. Bennett, J.C. and Tributsch, H. (1978) Bacterial leaching patterns on pyrite crystal surfaces. Journal of Bacteriology, 134, 310-317.
  10. Berry, V.K. and Murr, L.E. (1978) Direct observations of bacteria and quantitative studies of their catalytic role in the leaching of low-grade, copper-bearing waste. In: Murr, L.E,, Torma, A.E. and Brierley. A. (eds.), Merallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena, Academic press, New York, 103-136.
  11. Bhatti, T.M., Bigham, J.M., Carlson, L., and Tuovinen, O.H. (1993) Mineral products of pyrrhotite oxidation by Thiobacillus ferrooxidans, Applied and Environmental Microbiology, 59, 1984-1990.
  12. Brierley, C.L. and Murr, L.E. (1973) Leaching: use of a thermophilic and chemoautotrophic microbe. Science, 179, 488-490. https://doi.org/10.1126/science.179.4072.488
  13. Chaudhury, G.R., Sukla, L.B., and Das, R.P. (1985) Kinetics of bio-chemical leaching of sphalerite concentrate, Metallurgical Transaction B, 16, 667-670.
  14. Edwards, K.J., Hu,B., Hamers, R.J., and Banfield, J.F. (2001) A new look at microbial leaching patterns on sulfide minerals. FEMS Microbiology Ecology, 34, 197-206. https://doi.org/10.1111/j.1574-6941.2001.tb00770.x
  15. Escobar, B., Huerta, G., and Rubio, J. (1997) Short communication: influence of LPS on the attachment of Thiobacillus ferrooxidans to minerals. World Journal of Microbiology & Biotechnology, 13, 593-594. https://doi.org/10.1023/A:1018585930229
  16. Garcia, O. Jr., Bigham, J.M., and Tuovinen, O.H. (1995) Sphalerite oxidation by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Canadian Journal of Microbiology, 41, 578-584. https://doi.org/10.1139/m95-077
  17. Gehrke, T., Telegdi, J., Thierry, D., and Sand, W. (1998) importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Applied and Environmental Microbiology, 64, 2743-2747.
  18. Grishin, S.I., Bigham, J.M., and Tuovinen, O.H. (1988) Characterization of jarosite formed upon bacterial oxidation of ferrous sulfate in a packed-bed reactor. Applied and Environmental Microbiology, 54, 3101- 3106.
  19. Hiskey, J.B. and Wadsworth, M.E. (1975) Galvanic conversion of chalcopyrite. Metallurgical Transactions B, 6B, 183-190.
  20. Kinnunen, P.H.-M., Robertson, W.J., Plumb, J.J., Gibson, J.A.E., Nichols, P.D., Franzmann, P.D., and Puhakka, J.A. (2003) The isolation and use of iron-oxidizing, moderately thermophilic acidophiles from the Collie coal mine for the generation of ferric iron leaching solution. Appl. Microbiol. Biotechnol., 60, 748-753. https://doi.org/10.1007/s00253-002-1185-3
  21. Konhauser K.O., Fyfe W.S., Schultzelam S., Ferris F.G., and Beveridge T.J. (1994) Iron phosphate precipitation by epilithic microbial biofilm in Arctic Canada. Can. J. Earth Sci. 31, 1320-1324. https://doi.org/10.1139/e94-114
  22. Konhauser, K. (1998) Diversity of bacteria iron mineralization. Earth-Science Reviews, 43, 91-121. https://doi.org/10.1016/S0012-8252(97)00036-6
  23. Konhauser, K. (2007) Introduction to Geomicrobiology. Blackwell Publishing, 425p.
  24. Madigan, B. (1992) Biology of Microorganisms. Prenticehall, 922p.
  25. Malouf, E.E. and Prater, J.D. (1961) Role of bacteria in the alteration of sulfide minerals. Journal of Metals, 13, 353-356.
  26. Mehta, A.P. and Murr, L.E. (1983) Fundamental studies of the contribution of galvanic interaction to acidbacterial leaching of mixed metal sulfides. Hydrometallurgy, 9, 235-256. https://doi.org/10.1016/0304-386X(83)90025-7
  27. Miller, K.W. and Risatti, B. (1988) Microbial oxidation of pyrrhotites in coal chars. Fuel, 67, 1150-1154. https://doi.org/10.1016/0016-2361(88)90386-9
  28. Murr, L.E. and Berry, V.K. (1976) Direct observations of selective attachment of bacteria on low-grade sulfide ores and other mineral surfaces. Hydrometallurgy, 2, 11-24. https://doi.org/10.1016/0304-386X(76)90010-4
  29. Natarajan, K.A. and Iwasaki, I. (1983) Role of galvanic interactions in the bioleaching of Duluth gabbro copper-nickel sulfides. Separation Science and Technology, 18, 1095-1111. https://doi.org/10.1080/01496398308059919
  30. Norris, P.R. and Barr, D.B. (1985) Growth and iron oxidation by acidophilic moderate thermophiles, FEMS Microbiology Letters, 28, 221-224. https://doi.org/10.1111/j.1574-6968.1985.tb00795.x
  31. Norris, P.R. and Parrott, L. (1986) High temperature, mineral concentrate dissolution with Sulfolobus. In: Lawrence, R.W., Branion, R.M.R. and Ebner, H.E. (eds.), Fundamental and Applied Biohydrometallurgy, Elsevier, New York, 355-365.
  32. Norris, P.R., Marsh, R.M., and Linstrom, E.B. (1986) Growth of mesophilic and thermophilic acidophilic bacteria on sulfur and tetrathionate. Biotechnology and Applied Biochemistry. 8, 318-329.
  33. Petersen, J. and Dixon, D.G. (2002) Thermophilic heap leaching of a chalcopyrite concentrate. Minerals Engineering, 15, 777-785. https://doi.org/10.1016/S0892-6875(02)00092-4
  34. Phillips, W.R. and Griffen, D.T. (1981) Optical Mineralogy. Freeman, 677p.
  35. Poliani, C. and Donati, E. (1999) The role of exopolymers in the bioleaching of a non-ferrous metal sulphide. Journal of Industrial Microbiology & Biotechnology, 22, 88-92. https://doi.org/10.1038/sj.jim.2900610
  36. Rodriguez-Leiva, M. and Tributsch, H. (1988) Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on synthetic pyrite. Archives of Microbiology, 149, 401-405. https://doi.org/10.1007/BF00425578
  37. Rojas-Chapana, J.A., Giersig, M., and Tributsch, H. (1996) The path of sulfur during the bio-oxidation of pyrite by Thiobacillus ferrooxidans. Fuel, 75, 923-930. https://doi.org/10.1016/0016-2361(96)00057-9
  38. Rojas-Chapana, J.A. and Tributsch, H. (2004) Interfacial activity and leaching patterns of Lptospirillum ferrooxidans on pyrite. FEMS Microbiology Ecology, 47, 19-29. https://doi.org/10.1016/S0168-6496(03)00221-6
  39. Rojas-Chapana, J.A., Giersig, M., and Tributsch, H. (1995) Sulfur colloids as temporary energy reservoirs for Thiobacillus ferrooxidans during pyrite oxidation. Archives of Microbiology, 163, 352-356. https://doi.org/10.1007/BF00404208
  40. Sand, W., Gehrke, T., Hallmann, R., and Schippers, A. (1995) Sulfur chemistry, biofilm, and the(in)direct attack mechanism-a critical evaluation of bacterial leaching. Applied Microbiology and Biotechnology, 43, 961-966. https://doi.org/10.1007/BF00166909
  41. Sand, W., Gehrke, T., Jozsa, P.G., and Schippers, A. (2001) (Bio)chemistry of bacterial leaching - direct vs indirect bioleaching. Hydrometallurgy, 59, 159-175. https://doi.org/10.1016/S0304-386X(00)00180-8
  42. Santhiya, D., Subramanian, S., and Natarajan, K.A. (2002) Surface chemical studies on sphalerite and galena using extracellular polysaccharides isolated from Bacillus polymyxa. Journal of Colloid and Interface Science. 256, 237-248. https://doi.org/10.1006/jcis.2002.8681
  43. Schippers, A. (2007) Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification. In: Donati, E.R. and Sand, W. (eds.), Microbial Processing of Metal Sulfides, Springer, 3-33.
  44. Schippers, A. and Sand, W. (1999) Bacterial leaching of metal sulfides proceeds by two in direct mechanisms via thiosulfate of via polysulfides and sulfur. Applied and Environmental Microbiology, 65, 319-321.
  45. Silverman, M.P. (1967) Mechanism of bacteria pyrite oxidation. Journal of Bacteriology, 94, 1046-1051.
  46. Tributsch, H. (2001) Direct versus indirect bioleaching. Hydrometallurgy, 59, 177-185. https://doi.org/10.1016/S0304-386X(00)00181-X
  47. Tuovinen, O.H. (1990) Biological fundamental of mineral leaching processes. In: Ehrlich, H.L. and Brierley, C.L. (eds.), Microbial Mineral Rrecovery, McGraw- Hill Publishing Company, 55-78
  48. Wolfaardt, G.M., Lawrence, J.R., and Korber, D.R. (1999) Functions of EPS. In: Jost, W. (eds.) Microbial Extracellular Polymeric Substance: Characterization, Structure, and Functions, Springer, 171-200.