생쥐 난소 내 Nesfatin-1/NUCB2 발현과 결합 부위 확인

Expression of Nesfatin-1/NUCB2 and Its Binding Site in Mouse Ovary

  • 김진희 (서울여자대학교 자연과학대학 생명환경공학과) ;
  • 윤미라 (서울여자대학교 자연과학대학 생명환경공학과) ;
  • 방소영 (서울여자대학교 자연과학대학 생명환경공학과) ;
  • 심지연 (서울여자대학교 자연과학대학 생명환경공학과) ;
  • 강희래 (서울여자대학교 자연과학대학 생명환경공학과) ;
  • 양현원 (서울여자대학교 자연과학대학 생명환경공학과)
  • Kim, Jin-Hee (Dept. of Bioenvironmental Technology, College of Natural Sciences, Seoul Women's University) ;
  • Youn, Mi-Ra (Dept. of Bioenvironmental Technology, College of Natural Sciences, Seoul Women's University) ;
  • Bang, So-Young (Dept. of Bioenvironmental Technology, College of Natural Sciences, Seoul Women's University) ;
  • Sim, Ji-Yeon (Dept. of Bioenvironmental Technology, College of Natural Sciences, Seoul Women's University) ;
  • Kang, Hee-Rae (Dept. of Bioenvironmental Technology, College of Natural Sciences, Seoul Women's University) ;
  • Yang, Hyun-Won (Dept. of Bioenvironmental Technology, College of Natural Sciences, Seoul Women's University)
  • 투고 : 2010.12.05
  • 심사 : 2010.12.20
  • 발행 : 2010.12.31

초록

최근 시상하부에서 생성되는 nesfatin-1/NUCB2가 섭식과 에너지 대사를 조절한다는 사실이 새롭게 밝혀졌다. 본 연구에서는 이러한 단백질이 생쥐의 생식기관에서도 발현을 하는지, 그리고 그 수용체가 생식기관 내에 존재하는 지를 확인함으로써 nesfatin-1이 생식기능에 미칠 수 있는 가능성을 알아보고자 하였다. 암컷 생쥐에서 난소와 자궁을 획득하여 conventional PCR 방법으로 NUCB2 mRNA 발현을 조사하였고, real-time PCR 방법으로 상대적인 NUCB2 mRNA 발현량을 비교 분석하였다. 난소 내 nesfatin-1 단백질의 발현 위치를 조사하기 위하여 nesfatin-1 항체를 이용한 면역조직화학염색법을 수행하였으며, biotin conjugated nesfatin-1을 이용하여 nesfatin-1 결합 부위를 확인하였다. 또한 생식소 내 NUCB2 mRNA 발현이 성선자극호르몬에 의해 영향을 받는지 알아보기 위해 PMSG 투여 후 NUCB2 mRNA 발현량을 조사하였다. 실험 결과, 생쥐의 난소와 자궁에서 확인된 NUCB2 유전자가 시상하부에서 만큼이나 많은 양이 발현되고 있었다. 면역조직화학적 염색 결과, nesfatin-1 단백질은 협막세포와 대부분의 기질세포에서 발현되었고, 일부 황체세포에서도 발현이 확인되었다. 반면, 난포 내 과립세포에서는 발현되지 않았으나, 특정 난포 내 난자에서는 발현됨을 확인하였다. 한편, nesfatin-1 단백질의 결합 부위는 난소 백막 주위의 기질세포와 협막세포에서 관찰되었다. 또한 PMSG 투여 후 난소와 자궁에서 NUCB2 mRNA의 발현이 유의하게 증가함을 확인하였다. 이상의 결과에서 난소 내 nesfatin-1 단백질의 발현과 그 결합 부위의 존재는 nesfatin-1이 뇌에서 뿐만 아니라 생식기관에서도 국부조절인자로써 중요한 역할을 할 것으로 사료되며, 앞으로 생식기관에 미치는 nesfatin-1의 역할을규명하기위한더많은연구가필요하다고판단된다.

It was recently reported that nesfatin-1/NUCB2, which is secreted from the brain, controls appetite and energy metabolism. The purpose of this research was to confirm whether or not the protein and its binding site should have been expressed in the mouse reproductive organs and to know the possible effects of nesfatin-1 on the reproductive function. Using the ICR female mouse ovary and uterus, the expression of NUCB2 mRNA was confirmed with the conventional PCR and the relative amount of NUCB2 mRNA in the tissues was analyzed with real-time PCR. Immunohistochemical staining was performed using the nesfatin-1 antibody to investigate the nesfatin-1 protein expression and the biotin conjugated nesfatin-1 to confirm the binding site for nesfatin-1 in the ovary. Furthermore, in order to examine if the expression of NUCB2 mRNA in the ovary and uterus is affected by gonadotropin, its mRNA expression was analyzed after PMSG administration into mice. As a result, the expression level of NUCB2 mRNA in the ovary and the uterus was as much as the expression level in hypothalamus. As a result of the immunohistochemical staining, nesfatin-1 proteins were localized at the theca cells, the interstitial cells, and some of the luteal cells. However, the granulosa cells in the follicles did not stain. Interestingly, the oocytes in the some follicles were stained with nesfatin-1. On the other hand, nesfatin-1 protein binding sites were displayed at the theca cells and the interstitial cells near the tunica albuginea. After PMSG administration the expression level of NUCB2 mRNA was increased in the ovary and the uterus. These results demonstrate that for the first time the nesfatin-1 and its binding site were expressed in the ovary and NUCB2 mRNA expression was controlled by gonadotropin, suggesting an important role in the reproductive organs as a local regulator. Therefore, further study is needed to elucidate the functions of nesfatin-1 on the reproductive organs.

키워드

참고문헌

  1. Armstrong DG, Hogg CO (1996) Insulin-like growth factor I (IGF-I), IGF-II and type-I IGF receptor gene expression in the ovary of the laying hen. J Reprod Fertil 106:101-106. https://doi.org/10.1530/jrf.0.1060101
  2. Atsuchi K, Asakawa A, Ushikai K, Ataka K, Tsai M, Koyama K, Sato Y, Kato I, Fujimiya M, Inui A (2010) Centrallyadministered nesfatin-1 inhibits feeding behaviour and gastroduodenal motility in mice. Neuroscience 21:1008-1011.
  3. Barnikol-Watanabe S, Gross NA, Gotz H, Henkel T, Karabinos A, Kratzin H, Barnikol HU, Hilschmann N (1994) Human protein NEFA, a novel DNA binding/EF-hand/ leucine zipper protein. Molecular cloning and sequence analysis of the cDNA, isolation and characterization of the protein. Biol Chem Hoppe Seyler 375:497-512. https://doi.org/10.1515/bchm3.1994.375.8.497
  4. Brailoiu GC, Dun SL, Brailoiu E, Inan S, Yang J, Chang JK, Dun NJ (2007) Nesfatin-1: distribution and interaction with a G protein coupled receptor in the rat brain. Endocrinology 148:5088-5094. https://doi.org/10.1210/en.2007-0701
  5. Brankin V, Quinn RL, Webb R, Hunter MG (2005) BMP-2 and -6 modulate porcine theca cell function alone and co-cultured with granulosa cells. Domest Anim Endocrinol 29:593-604. https://doi.org/10.1016/j.domaniend.2005.04.001
  6. Duleba AJ, Pehlivan T, Carbone R, Spaczynski RZ (2001) Activin stimulates proliferation of rat ovarian thecal-interstitial cells. Biol Reprod 65:704-709. https://doi.org/10.1095/biolreprod65.3.704
  7. Erickson GF, Shimasaki S (2003) The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle. Reprod Biol Endocrinol 5;1:9.
  8. Foo KS, Brauner H, Ostenson CG, Broberger C (2010) Nucleobindin-2/nesfatin in the endocrine pancreas: Distribution and relationship to glycaemic state. J Endocrinol 204: 255-263. https://doi.org/10.1677/JOE-09-0254
  9. Foo KS, Brismar H, Broberger C (2008) Distribution and neuropeptide coexistence of nucleobindin-2 mRNA/nesfatin- like immunoreactivity in the rat CNS. Neuroscience 156:563-579. https://doi.org/10.1016/j.neuroscience.2008.07.054
  10. Fort P, Salvert D, Hanriot L, Jego S, Shimizu H, Hashimoto K, Mori M, Luppi PH (2008) The satiety molecule nesfatin-1 is co-expressed with melanin concentrating hormone in tuberal hypothalamic neurons of the rat. Neuroscience 155:174-181. https://doi.org/10.1016/j.neuroscience.2008.05.035
  11. Garcia-Galiano D, Navarro VM, Gaytan F, Tena-Sempere M (2010) Expanding roles of NUCB2/nesfatin-1 in neuroendocrine regulation. J Mol Endocrinol 45:281-290. https://doi.org/10.1677/JME-10-0059
  12. Goebel M, Stengel A, Wang L, Lambrecht NW, Taché Y (2009) Nesfatin-1 immunoreactivity in rat brain and spinal cord autonomic nuclei. Neurosci Lett 452:241-246. https://doi.org/10.1016/j.neulet.2009.01.064
  13. Gonzalez R, Tiwari A, Unniappan S (2009) Pancreatic beta cells colocalize insulin and pronesfatin immunoreactivity in rodents. Biochem Biophys Res Commun 381:643-648. https://doi.org/10.1016/j.bbrc.2009.02.104
  14. Hayashi KG, Acosta TJ, Tetsuka M, Berisha B, Matsui M, Schams D, Ohtani M, Miyamoto A (2003) Involvement of angiopoietin-tie system in bovine follicular development and atresia: messenger RNA expression in theca interna and effect on steroid secretion. Biol Reprod 69:2078-2084. https://doi.org/10.1095/biolreprod.103.017152
  15. Kanai Y, Tanuma S (1992) Purification of a novel B cell growth and differentiation factor associated with lupus syndrome. Immunol Lett 32:43-48. https://doi.org/10.1016/0165-2478(92)90197-V
  16. Kohno D, Nakata M, Maejima Y, Shimizu H, Sedbazar U, Yoshida N, Dezaki K, Onaka T, Mori M, Yada T (2008) Nesfatin-1 neurons in paraventricular and supraoptic nuclei of the rat hypothalamus coexpress oxytocin and vasopressin and are activated by refeeding. Endocrinology 149:1295-1301. https://doi.org/10.1210/en.2007-1276
  17. Madan P, Bridges PJ, Komar CM, Beristain AG, Rajamahendran R, Fortune JE, MacCalman CD (2003) Expression of messenger RNA for ADAMTS subtypes changes in the periovulatory follicle after the gonadotropin surge and during luteal development and regression in cattle. Biol Reprod 69:1506-1514. https://doi.org/10.1095/biolreprod.102.013714
  18. Miura K, Titani K, Kurosawa Y, Kanai Y (1992) Molecular cloning of nucleobindin, a novel DNA-binding protein that contains both a signal peptide and a leucine zipper structure. Biochem Biophys Res Commun 187:375-380. https://doi.org/10.1016/S0006-291X(05)81503-7
  19. Nonogaki K, Ohba Y, Sumii M, Oka Y (2008) Serotonin systems upregulate the expression of hypothalamic NUCB2 via 5-HT2C receptors and induce anorexia via a leptin- indepen-dent pathway in mice. Biochem Biophys Res Commun 372:186-190. https://doi.org/10.1016/j.bbrc.2008.05.010
  20. Oh-I S, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, Eguchi H, Yamamoto M, Imaki T, Hashimoto K, Tsuchiya T, Monden T, Horiguchi K, Yamada M, Mori M (2006) Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 443:709-712. https://doi.org/10.1038/nature05162
  21. Price CJ, Hoyda TD, Samson WK, Ferguson AV (2008a) Nesfatin-1 influences the excitability of paraventricular nucleus neurones. J Neuroendocrinol 20:245-250.
  22. Price CJ, Samson WK, Ferguson AV (2008b) Nesfatin-1 inhibits NPY neurons in the arcuate nucleus. Brain Res 1230:99-106. https://doi.org/10.1016/j.brainres.2008.06.084
  23. Ramanjaneya M, Chen J, Brown JE, Tripathi G, Hallschmid M, Patel S, Kern W, Hillhouse EW, Lehnert H, Tan BK et al. (2010) Identification of nesfatin-1 in human and murine adipose tissue: A novel depot specific adipokine with increased levels in obesity. Endocrinology 151:3169-3180. https://doi.org/10.1210/en.2009-1358
  24. Shimizu H, Oh-I S, Hashimoto K, Nakata M, Yamamoto S, Yoshida N, Eguchi H, Kato I, Inoue K, Satoh T, Okada S, Yamada M, Yada T, Mori M (2009) Peripheral administration of nesfatin-1 reduces food intake in mice: the leptin-independent mechanism. Endocrinology 150:662-671. https://doi.org/10.1210/en.2008-0598
  25. Silva JR, van den Hurk R, van Tol HT, Roelen BA, Figueiredo JR (2004) Gene expression and protein localisation for activin-A, follistatin and activin receptors in goat ovaries. J Endocrinol 183:405-415. https://doi.org/10.1677/joe.1.05756
  26. Stengel A, Goebel M, Wang L, Tache Y (2009a) Ghrelin, des-acyl ghrelin and nesfatin-1 in gastric X/A-like cells: Role as regulators of food intake and body weight. Peptides 31:357-369.
  27. Stengel A, Goebel M, Yakubov I, Wang L, Witcher D, Coskun T, Tache Y, Sachs G, Lambrecht NW (2009b) Identification and characterization of nesfatin-1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa. Endocrinology 150:232-238. https://doi.org/10.1210/en.2008-0747
  28. Voge JL, Aad PY, Santiago CA, Goad DW, Malayer JR, Allen D, Spicer LJ (2004) Effect of insulin-like growth factors (IGF), FSH, and leptin on IGF-binding-protein mRNA expression in bovine granulosa and theca cells: quantitative detection by real-time PCR. Peptides 25:2195-2203. https://doi.org/10.1016/j.peptides.2004.07.008
  29. Zhang AQ, Li XL, Jiang CY, Lin L, Shi RH, Chen JD, Oomura Y (2009) Expression of nesfatin-1/NUCB2 in rodent digestive system. World J Gastroenterol 16:1735-1741.