생쥐의 수정란 배아줄기세포와 체세포핵이식 배아줄기세포에서 각인유전자, H19, Igf2r, Snrpn의 메틸화 경향

Methylation Patterns of Imprinting Genes, H19, Igf2r, and Snrpn, in Mouse Embryonic Stem Cells and Nuclear Transferred Embryonic Stem Cells

  • 이민호 (차의과학대학교 강남차병원 유전학연구실) ;
  • 주진영 (독일 Max Planck 연구소) ;
  • 조율희 (한양대학교 의과대학 유전학연구실) ;
  • 심성한 (차의과학대학교 강남차병원 유전학연구실)
  • Lee, Min-Ho (Genetics Laboratory, Fertility Center of CHA Gangnam Medical Center, CHA University) ;
  • Ju, Jin-Young (Dept. of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine) ;
  • Cho, Youl-Hee (Dept. of Medical Genetics, College of Medicine, Hanyang University) ;
  • Shim, Sung-Han (Genetics Laboratory, Fertility Center of CHA Gangnam Medical Center, CHA University)
  • 투고 : 2010.11.14
  • 심사 : 2010.12.11
  • 발행 : 2010.12.31

초록

DNA 메틸화 (DNA methylation)는 유전자의 발현을 조절하는 대표적인 후생학적 조절기작 (epigenetic regulation) 중에 하나이다. DNA 메틸화 양상은 생식세포 형성과정 및 배 발생단계에서 탈메틸화 (demethylation)와 de novo 메틸화의 드라마틱한 변화가 일어난다. 또한 이러한 DNA 메틸화는 배아줄기세포 (embryonic stem cells, ESCs)에서 특징적인 양상을 보이는 것으로 알려져 있다. 본 연구에서는 생쥐 수정란 유래 배아줄기세포와 체세포핵이식 배아줄기세포 (nuclear transplanted ESCs)를 이용해서 대표적 각인유전자 (imprinting genes)로 알려진 Snrpn, Igf2r, H19 유전자들에 대한 메틸화 양상을 알아보고자 하였다. 연구 결과 H19 유전자에 대해서는 DNA 메틸화 양상은 수정란 유래 배아줄기세포와 체세포핵이식 배아줄기세포에서 비슷한 경향을 보였으나, Snrpn과 Igf2r의 경우에는 체세포핵이식 배아줄기세포에서 과메틸화 (hypermethylation) 경향을 보였다.

DNA methylation is one of the major epigenetic regulations of gene expression. The DNA methylation patterns are dramatically changed during gametogenesis and embryogenesis, and especially, it has been known that embryonic stem cells show a distinct methylation pattern. In this study, we examined the methylation patterns of imprinting genes, H19, Igf2r, and Snrpn, in stem cells induced from fertilized embryo (fES) and somatic cell nuclear transferred embryo (ntES). The methylation pattern of H19 gene in both fES and ntES were similar. However, the methylation patterns of Igf2r and Snrpn in ntES (hypermethylated) were slightly different from fES cells.

키워드

참고문헌

  1. Bell J (2008) A simple way to treat PCR products prior to sequencing using ExoSAP-IT. Biotechniques 44:834. https://doi.org/10.2144/000112890
  2. Benanti JA, Wang ML, Myers HE, Robinson KL, Grandori C, Galloway DA (2007) Epigenetic down-regulation of ARF expression is a selection step in immortalization of human fibroblasts by c-Myc. Mol Cancer Res 5:1181-1190. https://doi.org/10.1158/1541-7786.MCR-06-0372
  3. Bestor TH (2000) The DNA methyltransferases in mammals. Hum Mol Genet 9(16):2395-2402. https://doi.org/10.1093/hmg/9.16.2395
  4. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6-21. https://doi.org/10.1101/gad.947102
  5. Chang G, Liu S, Wang F, Zhang Y, Kou Z, Chen D, Gao S (2009) Differential methylation status of imprinted genes in nuclear transfer derived ES (NT-ES) cells. Genomics 93:112-119. https://doi.org/10.1016/j.ygeno.2008.09.011
  6. Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E, Reik W (2001) Conservation of methylation reprogramming in mammalian development: Aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA 98:13734-13738. https://doi.org/10.1073/pnas.241522698
  7. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635-638. https://doi.org/10.1016/j.cell.2007.02.006
  8. Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481-514. https://doi.org/10.1146/annurev.biochem.74.010904.153721
  9. Humphrey D, Eggan K, Akutsu H, Hochedlinger K, Rideout WM III, Biniszkiewicz D, Yanagimachi R, Jaenisch R (2001) Epigenetic instability in ES cells and cloned mice. Science 293:95-97. https://doi.org/10.1126/science.1061402
  10. Ju JY, Park CY, Gupta MK, Uhm SJ, Paik EC, Ryoo ZY, Cho YH, Chung KS, Lee HT (2008) Establishment of stem cell lines from nuclear transferred and parthenogenetically activated mouse oocytes for therapeutic cloning. Fertil Steril 89(5 Suppl):1314-1323. https://doi.org/10.1016/j.fertnstert.2006.11.203
  11. Ko YG, Nishino K, Hattori N, Arai Y, Tanaka S, Shiota K (2005) Stage-by-stage change in DNA methylation status of Dnmt1 locus during mouse early development. J Biol Chem 280(10):9627-9634. https://doi.org/10.1074/jbc.M413822200
  12. Leakey TI, Zielinski J, Siegfried RN, Siegel ER, Fan CY, Cooney CA (2008) A simple algorithm for quantifying DNA methylation levels on multiple independent CpG sites in bisulfite genomic sequencing electropherograms. Nucleic Acids Res 36:e64. https://doi.org/10.1093/nar/gkn210
  13. Li C, Chen Z, Liu Z, Huang J, Zhang W, Zhou L, Keefe DL, Liu L (2009) Correlation of expression and methylation of imprinted genes with pluripotency of parthenogenetic embryonic stem cells. Hum Mol Genet 18:2177-2187. https://doi.org/10.1093/hmg/ddp150
  14. Lucifero D, Mertineit C, Clarke HJ, Bestor TH, Trasler JM (2002) Methylation dynamics of imprinted genes in mouse germ cells. Genomics 79:530-538. https://doi.org/10.1006/geno.2002.6732
  15. Morison IM, Ramsay JP, Spencer HG (2005) A census of mammalian imprinting. Trends Genet 21:457-465 https://doi.org/10.1016/j.tig.2005.06.008
  16. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline- competent induced pluripotent stem cells. Nature 448(7151):313-317. https://doi.org/10.1038/nature05934
  17. Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447(7143):425-432. https://doi.org/10.1038/nature05918
  18. Rugg-Gunn PJ, Ferguson-Smith AC, Pedersen RA (2005) Epigenetic status of human embryonic stem cells. Nat Genet 37:585-587. https://doi.org/10.1038/ng1556
  19. Wee G, Shim JJ, Koo DB, Chae JI, Lee KK, Han YM (2007) Epigenetic alteration of the donor cells does not recapitulate the reprogramming of DNA methylation in cloned embryos. Reproduction 134:781-787. https://doi.org/10.1530/REP-07-0338
  20. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent EScell like state. Nature 448:318-324. https://doi.org/10.1038/nature05944
  21. Yamasaki Y, Kayashima T, Soejima H, Kinoshita A, Yoshiura K, Matsumoto N, Ohta T, Urano T, Masuzaki H, Ishimaru T, Mukai T, Niikawa N, Kishino T (2005) Neuron- specific relaxation of Igf2r imprinting is associated with neuron-specific histone modifications and lack of its antisense transcript Air. Hum Mol Genet 14:2511-2520. https://doi.org/10.1093/hmg/ddi255