사람의 허벅지지방유래 줄기세포의 특성 분석

Characterization of Human Thigh Adipose-derived Stem Cells

  • 허진영 (서울여자대학교 자연과학대학 생명공학과) ;
  • 윤진아 (서울여자대학교 자연과학대학 생명공학과) ;
  • 강현미 (서울여자대학교 자연과학대학 생명공학과) ;
  • 박세아 (서울여자대학교 자연과학대학 생명공학과) ;
  • 김해권 (서울여자대학교 자연과학대학 생명공학과)
  • Heo, Jin-Yeong (Dept. of Biotechnology, College of Natural Science, Seoul Women's University) ;
  • Yoon, Jin-Ah (Dept. of Biotechnology, College of Natural Science, Seoul Women's University) ;
  • Kang, Hyun-Mi (Dept. of Biotechnology, College of Natural Science, Seoul Women's University) ;
  • Park, Se-Ah (Dept. of Biotechnology, College of Natural Science, Seoul Women's University) ;
  • Kim, Hae-Kwon (Dept. of Biotechnology, College of Natural Science, Seoul Women's University)
  • 투고 : 2010.10.30
  • 심사 : 2010.12.18
  • 발행 : 2010.12.31

초록

사람의지방줄기세포는지방조직내에존재하는 줄기세포로 얻기 쉽고, 골수줄기세포와 유사한 특징을 가지고 있다. 그러나 지방을 추출하는 과정, 공여자의 나이, 체질량, 추출 부위에 따라 세포의 특성이 달라지며, 이질적인 세포군을 얻게 된다. 따라서 본 연구에서는 허벅지 지방에서 유래한 줄기세포 특성 분석 및 중배엽, 내배엽성 세포로의 분화능을 알아보았다. 허벅지 유래 줄기세포는 골수줄기세포와 유사한 섬유아세포와 유사한 모양을 보였으며, 체외에서 56.5번의 분열을 하였고, 약 $5{\times}10^{22}$개의 세포를 얻을 수 있었다. 이들은 SCF, Oct4, nanog, vimentin, CK18, FGF5, NCAM, Pax6, BMP4, HNF4a, nestin, GATA4, HLA-ABC, HLA-DR과 같은 유전자를 발현하였으며, Oct4, Thy-1, FSP, vWF, vimentin, desmin, CK18, CD54, CD4, CD106, CD31, a-SMA, HLA-ABC 등과 같은 단백질을 발현하였다. 또한 이들은 지방, 골, 연골 세포와 같은 중배엽성 세포로 분화하였고, 더욱이 인슐린 분비세포와 같은 내배엽성 세포로도 분화하였다. 결론적으로, 사람의 허벅지 유래 줄기세포는 골수 줄기세포와 유사하게 체외에서 증식이 가능하였으며, 유전자 및 단백질 발현 패턴을 가지고 있었으며, 다양한 세포로 분화 가능하였다. 이러한 결과로 미루어 보아 허벅지 지방유래 줄기세포는 골수 줄기세포를 대체할 수 있는 세포치료제의 재료가 될 수 있을 것으로 사료된다.

Human adipose stem cells are an abundant, readily available population of multipotent progenitor cells that reside in adipose tissue and these cells have characteristics very similar to bone marrow mesenchymal stromal cells (BMMSCs). However, liposuction procedure, donor age, body mass index, and harvesting sites might generate differences in the initial cell population and the preparations are a heterogeneous mixture of precursors with different subsets. Therefore, in this study, we investigated the characteristics of human thigh adipose stem cells and the differentiation potential into mesodermal and endodermal lineage. Thigh adipose stem cells maintained fibroblast-like morphology similar to BM-MSCs and they underwent average 56.5 doublings and produced $5{\times}10^{22}$ cells. These cells expressed SCF, Oct4, nanog, vimentin, CK18, FGF5, NCAM, Pax6, BMP4, HNF4a, nestin, GATA4, HLA-ABC, and HLA-DR genes at p3 and they also expressed Oct4, Thy-1, FSP, vWF, vimentin, desmin, CK18, CD54, CD4, CD106, CD31, a-SMA, HLA-ABC proteins. Moreover, they could differentiate into mesodermal lineage cells such as adipocyte, osteoblast and chondrocyte. In addition, they also differentiated into insulin secreting cells in our culture condition. In conclusion, human thigh adipose stem cells retain proliferative potential and expression patterns similar to BM-MSCs and they also differentiate into various cell types. Thus, human thigh adipose stem cells might be useful alternative cell source for clinical application.

키워드

참고문헌

  1. Bacou F, el Andalousi RB, Daussin PA, Micallef JP, Levin JM, Chammas M, Casteilla L, Reyne Y, Nougues J (2004) Transplantation of adipose tissue-derived stromal cells increases mass and functional capacity of damaged skeletal muscle. Cell Transplant 13:103-111. https://doi.org/10.3727/000000004773301771
  2. Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I (2004) Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22:675-682. https://doi.org/10.1634/stemcells.22-5-675
  3. Cowan CM, Shi YY, Aalami OO, Chou YF, Mari C, Thomas R, Quarto N, Contag CH, Wu B, Longaker MT (2004) Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 22:560-567. https://doi.org/10.1038/nbt958
  4. Fraser JK, Wulur I, Alfonso Z, Zhu M, Wheeler ES (2007) Differences in stem and progenitor cell yield in different subcutaneous adipose tissue depots. Cytotherapy 9:459-467. https://doi.org/10.1080/14653240701358460
  5. Gimble JM, Guilak F (2003) Differential potential of adipose derived adult stem (ADAS) cells. Curr Topics Dev Biol 58:137-160. https://doi.org/10.1016/S0070-2153(03)58005-X
  6. Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM (2001) Surface protein characterization of human adipose-derived stromal cells. J Cell Physiol 189:54-63. https://doi.org/10.1002/jcp.1138
  7. Hicok KC, Du Laney TV, Zhou YS, Halvorsen YD, Hitt DC, Cooper LF, Gimble JM (2004) Human adipose-de-rived adult stem cells produce osteoid in vivo. Tissue Eng 10:371-380. https://doi.org/10.1089/107632704323061735
  8. Ho AD, Wagner W, Franke W (2008) Heterogeneity of mesenchymal stromal cell preparations. Cytotherapy 10:320-330. https://doi.org/10.1080/14653240802217011
  9. Jurgens WJ, Oedayrajsingh-Varma MJ, Helder MN, Zandiehdoulabi B, Schouten TE, Kuik DJ (2008) Effect of tissue harvesting site on yield of stem cells derived from adipose tissue: Implications for cell-based therapies. Folia Histochem Cytobiol 46:307-314. https://doi.org/10.2478/v10042-008-0046-z
  10. Kang HM, Kim J, Park S, Kim J, Kim H, Kim KS, Lee EJ, Seo SI, Kang SG, Lee JE, Lim H (2009) Insulin-secreting cells from human eyelid-derived stem cells alleviate type I diabetes in immunocompetent mice. Stem Cells 27:1999-2008. https://doi.org/10.1002/stem.127
  11. Lee KD, Kuo TK, Whang-Peng J, Chung YF, Lin CT, Chou SH, Chen JR, Chen YP, Lee OK (2004) In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40:1275-1284. https://doi.org/10.1002/hep.20469
  12. Oedayrajsingh-Varma MJ, van Ham SM, Knippenberg M, Helder MN, Klein-Nulend J, Schouten TE (2006) Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy 8:166-177. https://doi.org/10.1080/14653240600621125
  13. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143-147. https://doi.org/10.1126/science.284.5411.143
  14. Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M (2006) Chracterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 24:462-471. https://doi.org/10.1634/stemcells.2004-0331
  15. Sowers JR (2003) Obesity as a cardiovascular risk factor. Am J Med 115:37-41. https://doi.org/10.1016/j.amjmed.2003.08.012
  16. Stenderup K, Justesen J, Clausen C, Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33:919-926. https://doi.org/10.1016/j.bone.2003.07.005
  17. Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE (2005) Multilineage differentiation of adipose tissue-derived stem cells. Keio J Med 54:132-141. https://doi.org/10.2302/kjm.54.132
  18. Tankó LB, Bagger YZ, Alexandersen P, Larsen PJ, Christiansen C (2003) Central and peripheral fat mass have contrasting effects on the progression of aortic calcification in postmenopausal women. Eur Heart J 24:1531-1537. https://doi.org/10.1016/S0195-668X(03)00319-1
  19. Tchkonia T, Giorgadze N, Pirtskhalava T, Tchoukalova Y, Karagiannides I, Forse RA, DePonte M, Stevenson M, Guo W, Han J, Waloga G, Lash TL, Jensen MD, Kirkland JL (2002) Fat depot origin affects adipogenesis in primary cultured and cloned human preadipocytes. Am J Physiol Regul Integr Comp Physiol 282:1286-1296. https://doi.org/10.1152/ajpregu.00653.2001
  20. Timper K, Seboek D, Eberhardt M, Linscheid P, Christ-Crain M, Keller U, Müller B, Zulewski H (2006) Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun 341:1135-1140. https://doi.org/10.1016/j.bbrc.2006.01.072
  21. Van Harmelen V, Rohrig K, Hauner H (2004) Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects. Metabolism 53:632-637. https://doi.org/10.1016/j.metabol.2003.11.012
  22. Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364-370. https://doi.org/10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C
  23. Wu X, Hoffstedt J, Deeb W, Singh R, Sedkova N, Zilbering A, Zhu L, Park PK, Arner P, Goldstein BJ (2001) Depotspecific variation in protein-tyrosine phosphatase activities in human omental and subcutaneous adipose tissue: A potential contribution to differential insulin sensitivity. J Clin Endocrinol Metab 86:5973-5980. https://doi.org/10.1210/jc.86.12.5973
  24. Xu W, Zhang X, Qian H, Zhu W, Sun X, Hu J, Zhou H, Chen Y (2004) Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp Biol Med 229:623-631. https://doi.org/10.1177/153537020422900706
  25. Zuk PA, Zhu M, Mizuno H, Huang JI, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: Implications for cellbased therapies. Tissue Eng 7:211-228. https://doi.org/10.1089/107632701300062859