On the QoS Support in Medium Access Control for Medical Sensor Networks

의료용 센서 네트워크에서 QoS 지원의 매체접속제어

  • Received : 2010.10.28
  • Accepted : 2010.12.30
  • Published : 2010.12.31

Abstract

In line with the requirement of appropriate protocol support for such mission-critical wireless sensor network (WSN) applications as patient monitoring, we investigate the framework for designing medium access control (MAC) schemes. The data traffic in medical systems comes with inherent traffic heterogeneity as well as strict requirement of reliability according to the varied extents of devise-wise criticality in separate cases. This implies that the quality-of-Service (QoS) issues are very distinctly delicate requiring specialized consideration. Besides, there are features in such systems that can be exploited during the design of a MAC scheme. In a monitoring or routine surveillance application, there are degrees of regularity or predictability in traffic as coordinated from a node of central control. The coordinator thus takes on the role of marshaling the resources in a neighborhood of nodes deployed mostly for upstream traffic; in a collision-free scheme, it schedules the time slots for each superframe based on the QoS specifications. In this preliminary study, we identify the key artifacts of such a MAC scheme. We also present basic performance issues like the impact of superframe length on delay incurred, energy efficiency achieved in the network operation as obtained in a typical simulation setup based on this framework.

환자모니터링과같은 특수목적의 무선센서망에 요구되는 프로토콜과 연관하여 매체접속제어(MAC) 기법을 설계하기 위한 구조를 연구하였다. 의료시스템의 데이터는 엄격한 신뢰성이 요구되며 또한 본질적으로 비균질성의 트래픽 특성을 가지고 있다. 이러한 환경은 특별한 고려사항이 요구되어 미묘한 서비스 품질(QoS) 문제를 야기하게 된다. 의료용 혹은 감시시스템 등의 응용분야에서는 트래픽의 정규성 및 예측성이 어느 정도 보장이되어, 관리노드는 이웃 노드들의 자원을 관리할 수 있는 역할을 할 수 있다. 즉, 관리노드는 주어진 QoS 사양에 따라 충돌없이 타임 슬롯을 할당할 수 있다. 본 연구는 이러한 조건하에서 MAC의 핵심구조를 파악하고, 수퍼프레임 길이와 노드의 수에 따른 에너지 소비량 및 수율을 분석하였다.

Keywords

References

  1. S. Park and S. Jayaraman, "Enhancing the quality of life through wearable technology," IEEE Engineering in Medicine and Biology Magazine, vol. 22, no. 3, pp.41-48, May-June 2003. https://doi.org/10.1109/MEMB.2003.1213625
  2. J. Ko, C. Lu, M. Srivastava, A. Stankovic, J. Terzis and M. Welsh, "Wireless sensor networks for healthcare," IEEE Proceedings, 2010.
  3. H. Alemdar and C. Ersoy, "Wireless sensor networks for healthcare: A survey," Computer Networks, no. 54, pp.2688-2710, October 2010.
  4. M. Chen, S. Gonzalez, A. Vasilakos, H. Cao and V. Leung, "Body area networks: a survey," Mobile Networks and Applications, pp.1-23, 2010.
  5. B. Latr'e, B. Braem, C. Blondia, I. Moerman and P. Demeester, "A survey on wireless body area networks," Wireless Networks, 2010.
  6. A. Bachir, M. Dohler, T. Watteyne and K. Leung, "MAC essentials for wireless sensor networks," IEEE Communications Surveys and Tutorials, vol. 12, no. 2, 2010.
  7. K. Park, D. Shrestha, Y. Ko, N. Vaidya and L. Sha, "IEEE 802.11 WLAN for medical-grade QoS," Proc. of the 1st ACM international workshop on Medical-grade wireless networks. ACM, pp.3-8, 2009.
  8. N. Timmons and W. Scanlon, "Analysis of the performance of IEEE 802.15. 4 for medical sensor body area networking," in Sensor and Ad Hoc Communications and Networks, 2004 (IEEE SECON '04). 2004 First Annual IEEE Communications Society Conference on, pp.16-24, 2004.
  9. "Part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs)," IEEE Computer Society, 2003.
  10. H. Li and J. Tan, "An ultra-low-power medium access control protocol for body sensor network," in Engineering in Medicine and Biology Society, 2005 (IEEE-EMBS '05). 27th Annual International Conference of the, pp.2451-2454, 2005.
  11. N. Golmie, D. Cypher and O. Rebala, "Performance analysis of low rate wireless technologies for medical applications," Computer Communications, vol. 28, no. 10, pp.1266-1275, June 2005. https://doi.org/10.1016/j.comcom.2004.07.021
  12. D. Cavalcanti, R. Schmitt, and A. Soomro, "Performance analysis of 802.15. 4 and 802.11 e for body sensor network applications," in 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007). Springer, pp.9-14, 2007
  13. B. Raman and K. Chebrolu, "Censor networks: a critique of "sensor networks" from a systems perspective," ACM SIGCOMM Computer Communication Review archive, vol. 38, pp.75-78, July 2008.
  14. S. Arnon, D. Bhastekar, D. Kedar and A. Tauber, "A comparative study of wireless communication network configurations for medical applications," IEEE Wireless Communications, vol. 10, no. 1, pp.56-61, 2003. https://doi.org/10.1109/MWC.2003.1182112
  15. T. Penzel, B. Kemp, G. Klosch, A. Schlogl, J. Hasan, A. Varri and I. Korhonen, "Acquisition of biomedical signals databases," IEEE Eng Med Biol Mag, vol. 20, no. 3, pp.25-32, 2001. https://doi.org/10.1109/51.932721