HCCI 기관에 있어서의 층상 흡기를 통한 압력 상승률 저감에 대한 연구

Potential of Fuel Stratification for Reducing Pressure Rise Rate in HCCI Engines

  • 임옥택 (울산대학교 기계자동차공학부)
  • Lim, Ock-Taeck (School of Mechanical and Automotive Engineering, University of Ulsan)
  • 투고 : 2010.10.26
  • 심사 : 2010.12.10
  • 발행 : 2010.12.31

초록

본 연구에서는 자착화특성이 다른 DME와 n-Butane을 이용하여 다양한 흡기공급방식에 따른 HCCI엔진연소에서 압력상승률의 저감특성에 대하여 조사하였다. 연소실내부의 가스압력측정, 광학측정용 엔진을 이용한 화학발광법의 측정 그리고 화학반응수치계산을 통하여 연소실내부에서 각 국소부분의 연소특성을 파악하였다. 최대압력상승률은 DME와 n-Butane의 혼합 상태에 의해 결정되어진다. DME가 성층화되고 n-Butane이 균일하게 분포되진 조건에서 가장 많이 감소되는데 두 연료가 균일한 경우에 비해서 최대압력상승률은 0.25MPa/ms 로 저감되었고 CA50도 5deg 지각되었다.

This study investigated the effect on reducing the pressure rise rate(PRR) in HCCI Engine by the variation of mixing ratio in the pre-mixture of DME and n-Butane that has different auto-ignition characteristics. In addition to measure of gas pressure in the engine cylinder, chemiluminescence image using the optical accessible engine and numerical analysis with multi-zones model were used to assess the combustion at each local area in the combustion chamber. The maximum PRR changes depending on mixing condition of DME and n-Butane. When DME is stratified and n-Butane is distributed uniformly, maximum PRR becomes lowest which is about 0.25MPa/ms and it corresponds to 5deg. retarding of CA50.

키워드

참고문헌

  1. R. H. Thring : Homogeneous-Charge Compression-Ignition (HCCI) Engines, SAE Paper 892068 (1989)
  2. Magnus Sjoberg, John E. Dec, Nicholas P. Cernansky : Potential of Thermal Stratification and Combustion Retard for Reducing Pressure-Rise Rates in HCCI Engines, Based on Multi-Zone Modeling and Experiments, SAE Paper 2005-01-0113(2005)
  3. Kengo Kumano and Norimasa Iida:Analysis of the Effect of Charge Inhomogeneity on HCCI Combustion by Chemiluminescence Measurement, SAE Paper 2004-01-1902(2004)
  4. 山下大輔, 權淳杓, 佐藤進, 飯田訓正 : HCCI機関 におけるメタン/DME混合燃料の自着火と燃焼 機構に関する研究, 自動車技術会論文集, Vol.36, No.6, p.85-90 (2005)
  5. Luz A. E., Kee R. J. and Miller J. A.:SENKIN: A FORTRAN Program for Predicting Homogeneous Gas Phase Chemical Kinetics With Sensitivity Analysis, Sandia National Laboratories Report, SAND87-8248 (1988)
  6. Luz A. E., Rupley F. and Miller J. A.:CHEMKIN-II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics, Sandia National Laboratories Report, SAND89-8009B (1989)
  7. H. J. Curran, W. J. Pitz, C. K. Westbrook, P. Dagaut, J-C Boettner and M. Cathonnet:A Wide Range Modeling Study of Dimethyl Ether Oxidation, International Journal Chemical Kinetics, Vol.30-3, p.229-241 (1998)
  8. S. Kojima:Detailed Modeling of n-ButaneAutoignition Chemistry,CombustionandFlame,No.99,p.87-136 (1994)