Optimal Network Design for Enhancing the Precision of National Geodetic Network

국가 측지망의 정밀도 향상을 위한 최적 측지망 설계에 관한 연구

  • 조재영 (성균관대학교 사회환경시스템공학과) ;
  • 윤홍식 (성균관대학교 사회환경시스템공학과) ;
  • 위광재 (성균관대학교 사회환경시스템공학과.한진정보통신(주) GIS 기술연구소)
  • Received : 2010.11.01
  • Accepted : 2010.11.18
  • Published : 2010.12.31

Abstract

This paper describe the optimal design of geodetic network by analytical technique based on the quality criteria of network. We described an example of geodetic network design taking into account the precision, reliability and robustness that are the main criteria of network design. The main goal of this paper is to evaluate the criteria to design the geodetic network coinciding with the criteria of high precision(error ellipse, 2DRMS, CEP), reliability(internal and external reliability) and robustness(maximum shear strain, principal strain, dilatation). The network design parameters computed in this study show that precision and reliability has not much improved by about 2% and 3%, respectively, than the observed network, while robustness has much improved by about 3, 100%. It also shown that maximum errors of precision, reliability and robustness were reduced by 5%, 7% and 16,957%, respectively.

측지망은 측량작업과 조정계산의 기준으로써 그 구성이 측량성과의 품질에 많은 영향을 미침에도 불구하고 대부분의 측지망 설계는 경험적 또는 단순한 기하학적 강도만을 기준으로 설계되어진다. 본 논문은 해석적 기법에 의한 측지망의 최적화 설계를 위하여 측지망의 품질을 평가하기 위한 다양한 기준을 분석하고 제시하기 위한 것으로써 측지망 품질평가 기준으로 정밀도(오자타원, 2DRMS, CEP), 신뢰성(내적신뢰성) 및 견인성(최대전단변형률, 주변형률, 면적변형률)을 제시하고 이를 실제 측지망의 설계에 적용함으로써 그 효용성을 평가하였다. 기관측된 실제 측지망에 8가지 품질평가 인자를 적용하여 측지망 최적화 설계의 효용성을 평가한 결과, 최적화 설계 전 후 품질평가 인자는 평균값에 있어서 정밀도는 2%, 신뢰성은 3%, 견인성은 3,001%로 향상되었으며, 최대값에 있어서 정밀도는 5% 신뢰성은 7%, 견인성은 16,957% 향상된 것으로 분석되었다.

Keywords

References

  1. 윤홍식(2003), 최적화 설계 기법에 의한 차세대 국가 측지기준점 체계 구축방안 연구, 국가GIS 지원연구 2003-67, 국토해양부.
  2. Ashkenazi, V., Cross, P. A. (1972), Strength analysis of block VI of the European triangulation, Bull. Geod., 103, pp. 5-24 https://doi.org/10.1007/BF02522112
  3. Baarda, W. (1968), A Testing Procedure for use in Geodetic Networks, Publication on Geodesy, New Series, Vol. 2, No. 5, Netherland Geodetic Commission, Delft, Netherlands.
  4. Bomford, G. (1980), Geodesy, 4th edition, Oxford University Press Inc., New York, pp. 719-720.
  5. Choi, J. H. and H. Sato (1997), Horizontal Strain of the Crust in Korea inferred from Geodetic Data, Journal of the Geodetic Society of Japan, Vol. 43, No.3, pp. 159-180.
  6. Cross, P. A. (1985), Numerical Methods in Network Design. In: Optimization and Design of Geodetic Networks, Edited by E. W. Grafarend and F. Sanso, Springer-Verlag, Berlin Heidelberg, New York, Tokyo, pp. 429-435.
  7. Craymer, M. R., Wells, D. E., Vanicek, P. and Devlin, R. L. (1990), Specifications for Urban GPS Surveys, Surveying and Land Information Systems, Vol. 50, No.4, pp. 251-259.
  8. Dare, P. and Vanicek, P. (1982), Strength Analysis of Horizontal Networks Using Strain, Proceedings of the Meeting of FIG Study Group 5B, Survey Control Networks, Aalborg University, Denmark, pp. 181-196.
  9. Even-Tzur, G. and Papo, H. (1996), Optimization of GPS Networks by Linear Programming, Survey Review, Vol. 33, No. 262, pp. 537-545. https://doi.org/10.1179/003962696791484844
  10. Grafarend, E. (1974), Optimization of Geodetic Networks, Balletina di Geodesia Science. Affini., Vol. 33, No.4, pp. 351-406.
  11. Leick, A. (2004), GPS Satellite Surveying, 3th edition, John Wiley & Sons, Inc., pp. 150-169.
  12. Schmitt, G. (1985), Second Order Design. In: Optimization and Design of Geodetic Networks. Edited by E. W. Grafarend and F. Sanso, Springer-Verlag, Berlin Heidelberg, New York, Tokyo, pp. 74-120.
  13. Thapa, K. (1980), Strain as a Diagnostic Tool to Identify Inconsistent Observations and Constrains in Horizontal Geodetic Networks, Department of Surveying Engineering, Technical Report No:68, UNB, Fredericton, Canada.
  14. Vanicek, P. Krakiwsky, E. J., Craymer, M.R., Gao, Y. and Ong, P. (1991), Robustness Analysis, Contract Rep. 91-002, Geodetic Survey Division, Geomatics Canada, Ottawa.
  15. Helmert, F. R. (1868), Studien uber rationelle Vermessungen, im Gebiete der hoheren Geodasie, Zeitschrift for Mathematik und Physik, Vol. 13, pp. 73-129.
  16. Jung, I. (1924), Uber die gunstigste Gewischitsverteilung in Basisnetzen, Akdern, Abh, Uppsala.
  17. Schreiber, O. (1882), Anordnung der Winkelbeobachtungen im Gottinger Basisnetz, Z. Vermessungswesen, Vol. 7, pp. 129-161.