Remediation of Heavy Metal Contaminated Groundwater by Using the Biocarrier with Dead Bacillus sp. B1 and Polysulfone

Bacillus sp. B1 사균과 Polysulfone으로 이루어진 미생물 담체를 이용한 중금속 오염 지하수 정화

  • Lee, Min-Hee (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Lee, Ji-Young (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Wang, Soo-Kyun (Department of Energy and Resource Engineering, Pukyong National University)
  • 이민희 (부경대학교 지구환경과학과) ;
  • 이지영 (부경대학교 지구환경과학과) ;
  • 왕수균 (부경대학교 에너지자원공학과)
  • Received : 2010.08.14
  • Accepted : 2010.12.08
  • Published : 2010.12.28

Abstract

Remediation process by using the bio-carrier (beads) with dead Bacillus sp. B1 and polysulfone was investigated for heavy metal contaminated groundwater. Sorption batch experiments using the bio-carrier were performed to quantify the heavy metal removal efficiencies from the contaminated solution. The analyses using SEM/EDS and TEM for the structure and the characteristic of precipitates on/inside the beads were also conducted to understand the sorption mechanism by the bio-carrier. Various amounts of freeze-dried dead Bacillus sp. B1 were mixed with polysulfone + DMF(N,N-dimethylformamide) solution to produce the bio-carrier (beads; less than 2mm in diameter) and 5% of Bacillus sp. B1 in the bio-carrier was optimal for Pb removal in the solution. The removal efficiency ratings of the bio-carrier for Pb, Cu and Cd were greater than 80% after adding 2g of bio-carrier in 50ml of aqueous solution (<10mg/L of each heavy metal concentration). Reaction time of the bio-carrier was very fast and most of the sorption reaction for heavy metals were completed within few hours. Batch experiments were duplicated at various pH conditions of aqueous solutions and Cu and Pb removal efficiencies highly maintained at wide pH ranges (pH 2-12), suggesting that the bio-carrier can be useful to clean up the acidic waste water such as AMD. From SEM/EDS and TEM analyses, it was observed that the bio-carrier was spherical shape and was overlapped by many porous layers. During the sorption experiment, Pb was crystallized on the surface of porous layers and also was mainly concentrated at the boundary of Bacillus sp. B1 stroma and polysulfone substrate, showing that the main mechanism of the bio-carrier to remove heavy metals is the sorption on/inside of the bio-carriers and the bio-carriers are excellent biosorbents for the removal of heavy metal ions from groundwater.

유류 및 중금속 오염 토양으로부터 분리한 토착 미생물인 Bacillus sp, B1 사균(dead biomass)과 polysulfone + DMF(N,N-dimethylformamide) 용액을 혼합하여 제조한 비드(지름 2mm 이하)형 미생물 담체를 이용하여 중급속 오염 지하수를 정화하는 배치실험을 실시하였으며, 담체에 흡착된 중금속의 특성과 구조를 분석하여 미생물 담체에 의한 중금속 제거 기작을 규명하였다. 담체 내 Bacillus sp. B1 사균 비율을 달리하여 제조한 담체들을 이용하여 오염수로부터 납 제거효율을 규명함으로써 미생물 담체 제조에 사용되는 최적의 사균 농도(%)를 결정하였으며, 오염수에 대하여 첨가하는 미생물 담체의 농도변화에 따른 중금속 제거효율을 규명하는 실험을 실시하여 최적의 중금속 제거효율을 가지는 오염수 내 담체 첨가량(농도; g/L)을 결정하였다. 담체 내 사균 농도가 0%(유기중합체로만 형성)와 1%인 경우 제조된 담체의 납 제거효율이 3% 미만으로 polysulfone + DMF 만으로 이루어진 담체는 중금속 제거효과가 거의 없으며, 담체 내 미생물 기질 부분에 의해 대부분의 중금속이 제거되는 것으로 나타났다. 실험 결과 미생물 담체 비용과 제거효율을 고려하면 사균 5%를 혼합하여 제조한 미생물 담체를 2g/50mL 농도로 오염수에 주입하는 것이 가장 효과적인 것으로 밝혀졌다. 담체와 오염수의 반응(흡착)시간에 따른 납과 구리의 제거 반응 실험 결과 두 시간 이내에 평형상태에 도달하여, 현장에서 다량의 중금속 오염 지하수를 짧은 시간(수 시간 이내)에 처리할 수 있을 것으로 판단되었다. 미생물 담체의 중금속 제거효율은 넓은 pH 범위에서 높게 나타났으며, 특히 pH 2-3인 경우 제거효율이 최대로 나타나 pH가 낮은 침출수, 산성폐수의 중금속 처리에도 효과가 있는 것으로 밝혀졌다. 오염수의 중금속(Pb, Cu, Cd) 초기 농도변화에 따른 미생물 담체의 제거율 실험 결과 납, 구리, 카드뮴의 경우 10mg/L 이하의 농도를 가지는 오염수에서 80% 이상의 제거 효율을 나타내어, 대부분의 국내 오염 지하수의 중금속 농도가 이보다 낮은 것을 감안할 때 본 실험에서 사용된 조건을 적용하여 미생물 담체를 이용하는 경우 다량의 중금속 오염 지하수를 효과적으로 제거할 수 있을 것으로 판단되었다. 미생물 담체를 이용한 납 제거 배치 실험 전/후 미생물 담체(bead)의 내/외부 구조를 SEM/EDS 및 TEM으로 분석한 결과 담체 내/외부 모두 다양한 크기의 다공질로 형성되어 있었으며, 외부 표면뿐 아니라 내부 면까지 납이 다량 흡착되어있는 것으로 나타나 본 실험에서 제조한 미생물 담체가 외부 표면 흡착에만 제한되었던 기존의 polysulfone 담체보다 중금속 제거 능력이 뛰어난 것으로 밝혀졌다. 미생물 담체에 형성된 납의 구조를 분석한 결과 담체의 주된 중금속 제거기작은 담체 내/외부 표면(특히 사균 기질과 polysulfone 물질 경계부)에 의한 다양한 형태의 흡착이었다.

Keywords

References

  1. Atlas, R.M. and Philp, J. (2005) Bioremediation; applied microbial solutions for real-world environment cleanup. America Society for Microbiology.
  2. Aksu, Z. and Gonen, F. (2004) Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochemistry, v.39, p.599-613. https://doi.org/10.1016/S0032-9592(03)00132-8
  3. Bai, R.S. and Abraham, T.E. (2003) Studies on chromium(VI) adsorption-desorption using immobilized fungal biomass. Bioresource Technology, v.87, p.17-26. https://doi.org/10.1016/S0960-8524(02)00222-5
  4. Bedient, P.B., Rifai, H.S. and Newell, C.J. (1994) Groundwater contamination, transport and remediation. Prentice Hall PTR.
  5. Beolchini, F., Pagnanelli, F., Toro, L. and Veglio, F. (2003) Biosorption of copper by Sphaerotilus natans immobilised in polysulfone matrix: equilibrium and kinetic analysis. Hydrometallurgy, v.70, p.101-112. https://doi.org/10.1016/S0304-386X(03)00049-5
  6. Cabuk, A., Akar, T., Tunali, S. and Tabak, O. (2006) Biosorption characteristics of Bacillus sp. ATS-2 immobilized in silica gel for removal of Pb(II). Journal of Hazardous Materials, v.136, p.317-323. https://doi.org/10.1016/j.jhazmat.2005.12.019
  7. Choi, A., Wang, S., and Lee, M. (2009) Biosorption of cadmium, copper, and lead ions from aqueous solutions by Ralstonia sp. and Bacillus sp. isolated from diesel and heavy metal contaminated soil. Geosciences Journal, v.14, p.331-341.
  8. Cummings, S.P. (2009) Bioremediation; methods and protocols. Springer Verlag.
  9. El-Naas, M.H., Al-Muhtaseb, S.A. and Makhlouf, S. (2009) Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol(PVA) gel. Journal of Hazardous Materials, v.164, p.720-725. https://doi.org/10.1016/j.jhazmat.2008.08.059
  10. Eweis, J.B., Ergas, S.J., Chang, D.P. and Schroeder, E.D. (1998) Bioremediation principles. WCB/McGraw Hill.
  11. Jeffers, T.H., Bennett, P.G. and Corwin, R.R. (1993) Biosorption of metal contaminants using immobilized biomass- field studies. Report of Investigations 9461, United Stated Department of The interior.
  12. Kim, S.H., Chon, H.T. and Lee, J.U. (2009) Biosorption of Pb and Cd by indigenous bacteria isolated from soil contaminated with oil and heavy metals. Econ. Environ. Geol., v.42, p.427-434.
  13. Lazaro, N., Sevilla, A.L., Morales, S. and Marques, A.M. (2003) Heavy metal biosorption by gellan gum gel beads. Water Research, v.37, p.2118-2126. https://doi.org/10.1016/S0043-1354(02)00575-4
  14. Lopez, A., Lazaro, N. and Marques, A.M. (1997) The interphase technique: a simple method of cell immobilization in gel-beads. Journal of Microbiological Methods, v.30, p.231-234. https://doi.org/10.1016/S0167-7012(97)00071-7
  15. Lozinsky, V.I., Zubov, A.L., and Titova, E.F. (1997) Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 2. Entrapped cells resemble porous fillers in their effects on the properties of PVA-cryogel carrier. Enzyme and Microbial Technology, v.20, p.182-190. https://doi.org/10.1016/S0141-0229(96)00110-X
  16. Moyer, C.L., Dobbs, F.C., and Karl, D.M. (1994) Estimation of diversity and community structure through RFLP distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent, Loihi Seamount, Hawaii. Applied and Environment Microbiology, v.60, p.871-879.
  17. Park, Y.K., Lee, C.H. and Park, S.J. (1994) Treatment characteristic of polyvinylalcohol(PVA) wastewater by immobilized microorganisms. Journal of Korean Society of Environ. Eng., v.16, p.985-993.
  18. Riser-Roberts, E. (1998) Remediation of petroleum contaminated soils; Biological, physical, and chemical processes. Lewis Publishers, Boca Raton.
  19. Suh, K.H., Kim, B.J. and Oh C.S. (2001) Removal of $NH_{3}$-N by using immobilized nitrifier consortium in PVA(Polyvinyl Alcohol)-I. effect of packing fraction and aeration rate on ammonia nitrogen removal. Korean J. Biotechnol. Bioeng., v.16, p.314-319.
  20. Tchobanoglous, G., Burton, F.L. and Stansel, H.P. (2003) Wastewater engineering, treatment and reuse. McGraw Hill.
  21. Texier, A.C., Andres, Y., Faur-Brasquet, C. and Le Cloirec, P. (2002) Fixed-bed study for lanthanide (La, Eu, Yb) ions removal from aqueous solutions by immobilized Pseudomonas aeruginosa: experimental data and modelization. Chemosphere, v.47, p.333-342. https://doi.org/10.1016/S0045-6535(01)00244-2
  22. Veglio, F., Beolchini, F. and Toro, L. (1998) Kinetic modelling of copper biosorption by immobilised biomass. Industrical and Engineering Chemistry Research, v.77, p.1107-1111.
  23. Wikipedia (2010) Wikipedia; the free encyclopedia. http://en.wikipedia.org/wiki/Polysulfone.
  24. Zouboulis, A.I., Matis, K.A., Loukidou, M. and Sebesta, F. (2003) Metal biosorption by PAN-immobilized fungal biomass in simulated wastewaters. Colloids and Surfaces A: Physicochem. Eng. Aspects, v.212, p.185-195. https://doi.org/10.1016/S0927-7757(02)00304-7