Influence of $NH_4^+$ and $NO_3^-$ Ratios in Fertigation Solution on Growth of Snapdragon Plug Seedlings and Changes in Medium Chemical Properties

$NH_4^+:NO_3^-$ 시비 비율이 금어초 플러그 묘 생장과 상토 화학성 변화에 미치는 영향

  • Lee, Poong-Ok (Department of Horticulture, Chungnam National University) ;
  • Lee, Jong-Suk (Department of Horticulture, Chungnam National University) ;
  • Choi, Jong-Myung (Department of Horticulture, Chungnam National University)
  • 이풍옥 (충남대학교 농업생명과학대학 원예학과) ;
  • 이종석 (충남대학교 농업생명과학대학 원예학과) ;
  • 최종명 (충남대학교 농업생명과학대학 원예학과)
  • Received : 2010.06.25
  • Accepted : 2010.11.13
  • Published : 2010.12.31

Abstract

Objective of this research was to investigate the influence of $NH_4^+$ and $NO_3^-$ ratios in liquid feeding on the growth of snapdragon 'Potomac Red' and changes in medium chemical properties. The seeds were sown into 200 plug trays and fertigated once a week with nutrient solution containing various ratios of $NH_4^+$ and $NO_3^-$ such as 0 : 100, 27 : 73, 50 : 50, 73 : 27, and 100 : 0. The total N concentrations were adjusted to 50, 100 and $150\;mg{\cdot}L^{-1}$ in plug stages of 2, 3, and 4, respectively. Determination of seedling growth and analysis of plant tissue and root medum were conducted at 56 days after sowing. The treatment of 27 : 73 ($NH_4^+:NO_3^-$) had the greatest plant height, fresh weight, and dry weight. The N and P contents in 27 : 73 ($NH_4^+:NO_3^-$) treatment based on the above ground plant tissues were 2.39 and 0.39%, respectively, which were the greatest among treatments. The elevation of $NH_4^+$ ratio in fertigation solution decreased tissue Ca and Mg contents, but that did not influence tissue K content. The variations in $NH_4^+:NO_3^-$ ratios impacted the soil solution pH and the difference among treatments had been severe since three weeks after sowing. Elevation of $NH_4^+$ ratios in fertigation solution increased electrical conductivity and concentrations of K, Ca, and Mg in soil solution of root medum. The $NH_4^+$ and $NO_3^-$ concentrations in the soil solution were high in weeks 2, 3, and 4, then decreased gradually as the biomass of seedlings increased. Medium P concentration decreased gradually as seedlings grew, but statistical differences were not observed among treatments.

금어초 'Potomac Red'를 200공 플러그 트레이에서 육묘하면서 $NH_4^+$$NO_3^-$ 비율을 조절한 액비로 시비한 결과 초장, 생체중 및 건물중 모두 27 : 73($NH_4^+:NO_3^-$)의 비율로 시비된 처리에서 가장 좋은 생장을 나타냈다. 파종 56일 후 식물조직의 질소와 인산함량은 27 : 73로 시비된 처리에서 각각 2.84% 및 0.39%로 가장 높게 분석되었다. 식물체내 K의 함량은 처리간 차이가 뚜렷하지 않았지만, 관비용액의 $NH_4^+$ 비율이 높아질수록 식물체의 Ca 및 Mg 함량이 감소하는 경향이었다. 상토의 pH는 파종 3주 후부터 $NH_4^+:NO_3^-$의 시비 비율에 따른 처리간 차이가 발생하여 8주까지 계속적으로 변하였으며, $NO_3^-$의 비율이 증가할수록 중성쪽으로, 그리고 $NH_4^+$의 비율이 증가할수록 산성쪽으로 변하였다. 상토의 EC는 $NH_4^+$ 의 비율이 증가할수록 높아졌고, 100% $NH_4^+$ 처리에서 파종 8주 후 $2.2dS{\cdot}m^{-1}$까지 상승하였다. $NH_4^+:NO_3^-$의 비율에 따른 상토중 질소 농도변화는 100 : 0의 비율에서 가장 높은 $NH_4^+$-N 농도를, 0 : 100에서 가장 높은 $NO_3^-$-N 농도를 나타내었고, 상토의 인산농도는 처리간 뚜렷한 차이가 없이 식물이 생장함에 따라 토양의 인산농도는 낮아졌다. 그러나 관비용액의 $NH_4^+$ 비율이 높아질수록 상토의 K, Ca 및 Mg 농도가 높아지는 경향이었다. 관비용액의 $NH_4^+:NO_3^-$의 비율에 대한 식물생장 반응을 고려할 때 두 질소 비율로 27 : 73으로 조절하는 것이 플러그 육묘를 위해 바람직하다고 판단하였다.

Keywords

References

  1. Britto, D.T. and H.J. Kronzucker. 2002. $NH_{4}^{+}$ toxicity in higher plants. J. Plant Physiol. 159:567-584. https://doi.org/10.1078/0176-1617-0774
  2. Britto, D.T. and H.J. Kronzucker. 2004. Bioengineering N acquisition in rice: Can novel initiatives in rice genomics and physiology contribute to global food security? Bio Essays 26:683-692.
  3. Choi, J.M. 1994. Increased nutrient uptake efficiency by controlling nutrient release in floral crops. Ph.D. Disser., North Carolina State Univ., Raleigh, USA.
  4. Choi, J.M., S.K. Jeong, and K.D. Ko. 2008. Influence of $NH_4^+:NO_3^-$ ratios in fertigation solution on appearance of ammonium toxicity, growth and nutrient uptake of 'Maehyang' strawberry (Fragaria ${\times}$ ananassa Duch.). Kor. J. Hort. Sci. Technol. 26:223-229.
  5. Escobar, M.A., D.A. Geisler, and A.G. Rasmusson. 2006. Reorganization of the alternative pathways of the Arabidopsis respiratory chain by nitrogen supply: Opposing effects of ammonium and nitrate. Plant J. 45:775-788. https://doi.org/10.1111/j.1365-313X.2005.02640.x
  6. Hanan, J.J. 1998. Greenhouse: Advanced technology for protected horticulture. Prentice Hall, Upper Saddle River, N.J.
  7. Hoagland, D.R. and D.I. Amon. 1950. The water culture method for growing plants without soil. Univ. of Calif. Agri. Exp. Sta. Circular 327.
  8. Marschner, H. 1995. Mineral nutrition of higher plants. 2nd ed. pp. 505-565. Academic Press, San Diego, CA.
  9. Matsumoto, H. and K. Tamura. 1981. Respiratory stress in cucumber roots treated with ammonium or nitrate nitrogen. Plant Soil 60:195-204. https://doi.org/10.1007/BF02374104
  10. Nelson, P.V. 2003. Greenhouse operation and management, 6th ed. Prentice Hall, N.J.
  11. Ragab, S.M. 1980. Water uptake and trans-potential in sunflower roots as influenced by ammonium ions. J. Agr. Sci. 94:145-150. https://doi.org/10.1017/S0021859600027994
  12. Rogers, M.N. 1992. Snapdragon. pp. 93-112. In: R.A. Larson (ed.). Introduction to floriculture (2nd ed.). Academic Press Inc., London.
  13. Roosta, H.R., A. Sajjadinia, A. Rahimi, and J.K. Schjoerring. 2009. Responses of cucumber plants to $NH_4^+$ and $NO_3^-$ nutrition: The relative addition rate technique vs. cultivation at constant nitrogen concentration. Sci. Hort. 121:397-403. https://doi.org/10.1016/j.scienta.2009.03.004
  14. Siddiqi, M.Y., B. Malhotra, X. Min, and A.D.M. Glass. 2002. Effects of ammonium and inorganic carbon enrichment on growth and yield of a hydroponic tomato crop J. Plant Nutrition and Soil Sci. 165:191-197. https://doi.org/10.1002/1522-2624(200204)165:2<191::AID-JPLN191>3.0.CO;2-D
  15. Styer, R.C. and D. Koranski. 2000. Crop-by-crop checklists. pp. 154-160. In: J. VanderVelde (ed.). Grower-Talks on plgs 3.Ball Publishing, Batavia, IL.
  16. Tate, R.L. 1995. Soil microbiology. pp. 254-278. John Wiley & Sons, Inc., NY.
  17. Warncke, D.D. 1986. Analyzing greenhouse growth media by the saturation extraction method. Hort-Science 21:223-225.