Modelling of Pollen Dispersal of Maize (Zea mays L.) Using Gamma Model

감마모델을 이용한 옥수수의 화분비산 모델링

  • Lee, Yong-Ho (College of Life Sciences and Biotechnology, Korea University) ;
  • Kwon, Young-Sun (College of Life Sciences and Biotechnology, Korea University) ;
  • Wang, Hong Wei (College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Su-Jeong (College of Life Sciences and Biotechnology, Korea University) ;
  • Alamgir, Kabir Md. (College of Life Sciences and Biotechnology, Korea University) ;
  • Karuppanapandian, Thirupathi (College of Life Sciences and Biotechnology, Korea University) ;
  • Hong, Sun-Hee (College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Dong-Jin (Department of Crop Science and Biotechnology, Dankook University) ;
  • Baek, Hyung-Jin (National Academy of Agricultural Science, Rural Development Administration) ;
  • Jang, Young-Seok (National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Wook (College of Life Sciences and Biotechnology, Korea University)
  • 이용호 (고려대학교 생명과학대학) ;
  • 권영선 (고려대학교 생명과학대학) ;
  • 왕굉위 (고려대학교 생명과학대학) ;
  • 이수정 (고려대학교 생명과학대학) ;
  • 코빌 (고려대학교 생명과학대학) ;
  • 판디안 (고려대학교 생명과학대학) ;
  • 홍선희 (고려대학교 생명과학대학) ;
  • 이동진 (단국대학교 식량생명공학과) ;
  • 백형진 (농촌진흥청 국립농업과학원) ;
  • 장영석 (농촌진흥청 국립식량과학원) ;
  • 김욱 (고려대학교 생명과학대학)
  • Received : 2010.11.11
  • Published : 2010.12.31

Abstract

The pollen dispersal by wind can make an important to understanding the viability and evolution of plants in ecological and agricultural science. Modelling can be applied to evaluate concerns about the spread of engineered pollens from genetically modified (GM) crops. Here, we are using gamma model to estimate the level of dispersal distance of pollen in the cross-pollination between two different maize (Zea mays L.) cultivars in GMO field of Korea University during the year 2010. The result of estimation of model indicates maximum pollen dispersal distance of estimated proportion of cross-pollination of maize was reached to 0.1% in 525 meter northwest due to the wind. We identify further measurements necessary to improve the accuracy of the model predictions.

본 연구는 유전자 조작 옥수수의 유전자 유출을 막기 위한 관리방법 개발의 목적으로 고려대학교 GMO 격리포장에서 2010년에 수행된 화분 비산실험의 결과를 이용하여 Yamamura(2004)의 Gamma model로 모델링하였다. 1. 모델의 결정계수는 0.44로 예측치가 실측치를 잘 설명하였다. 2 옥수수 화분의 최대 비산 방향은 북서쪽으로 나타났다. 3. 최대 비산 방향으로 타가수분율이 0.001까지 낮아지는 거리인 '유전자유출 한계거리(0.001)'는 525 m 그리고 국내법상 비의도적 GMO 혼입허용치인 0.03 까지 낮아지는 거리인 '최소 동일작물 재배 한계거리(0.03)'는 35 m로 나타났다.

Keywords

References

  1. Angevin F.. E. K. Klein, C. Choimet, A. Gauffreteau, C. Lavigne, A. Messen and J. M. Meynard. 2008. Modelling impacts of cropping systems and climate on maize cross-pollination in agricultural landscapes: The MAPOD model. Eur. J. Agron. 28: 471-484. https://doi.org/10.1016/j.eja.2007.11.010
  2. Arritt R. W., C. A. Clark , A. S. Goggi, H. L. Sanchez and M. E. Westgate, J. M. Riese. 2007. Lagrangian numerical simulations of canopy air flow effects on maize pollen dispersal. Field Crops Res. 102: 151-162. https://doi.org/10.1016/j.fcr.2007.03.008
  3. Brookes G. and P. Barfoot 2004. Coexistence of GM and Non GM Crops: Case Study of Maize Grown in Spain. PG Economics Ltd., Dorchester, UK.
  4. Dupont S., Y. Brunet and N. Jarosz. 2006. Eulerian modelling of pollen dispersal over heterogeneous vegetation canopies. Agric. For. Meteorol. 141: 82-104. https://doi.org/10.1016/j.agrformet.2006.09.004
  5. Gatehouse A. M. R., N. Ferry and R. J. M. Raemaekers. 2002. The case of the monarch buttertly: a verdict is returned. Trend. Genet. 18: 249-251. https://doi.org/10.1016/S0168-9525(02)02664-1
  6. Jarosz N., B. Loubet and L. Huber. 2004. Modelling airborne conceniration and deposition rate of maize pollen. Atmosph. Environ. 38: 5555-5566. https://doi.org/10.1016/j.atmosenv.2004.06.027
  7. Klein E. K., C. Lavigne, X. Foueillassar, P. H. Gouyon and C. Laredo. 2003. Corn Pollen Dispersal: Quasi-Mechanistic Models and Field Experiments. Ecol. Monogr. 73: 131-150. https://doi.org/10.1890/0012-9615(2003)073[0131:CPDQMM]2.0.CO;2
  8. Kuparinen A., T. Markkanen, H. Riikonen and T. Vesala. 2007. Modeling air-mediated dispersal of spores, pollen and seeds in forested areas. Ecol. Model. 208: 177-188. https://doi.org/10.1016/j.ecolmodel.2007.05.023
  9. Losey J. E., L. S. Rayor and M. E. Carter. 1999. Transgenic pollen harms monarch larvae. Nature. 399: 214.
  10. Murray D. R. 2003. Seeds of concern. The genetic manipulation of plants. CABI Publishing, New york.
  11. Sears M. K., R. L. Hellmich, D. E. Stanley-Horn, K. S. Oberhauser, J. M. Pleasants, H. R. Mattila, B. D. Siegfried and G. P. Dively. 2001. Impact of Bt corn pollen on monarch butterfly populations: A risk assessment. PNAS 98: 11937-11942. https://doi.org/10.1073/pnas.211329998
  12. Wolt J. D., C. A. Conlan and K. Majima. 2005. An ecological risk assessment of Cry1F maize pollen impact to pale grass blue butterfly. Environ. Biosafety Res. 4: 243-251. https://doi.org/10.1051/ebr:2006005
  13. Yamamura K. 2004. Dispersal distance of corn pollen under fluctuating diffusion coefficient. Popul. Ecol. 46: 87-101.
  14. 이용호, 문준철, 왕굉위, 이동진, 백형진, 장영석, 김욱. 2010. 옥수수의 화분비산으로 인한 타가수정의 지수감소모델을 이용한 모델링. 한국국제농업개발학회지. 22(2): 170-173.
  15. 한국바이오안전성정보센터. 2009. 2009년 바이오안전성 백서.
  16. 한국바이오안전성정보센터. 2010. LMO 관련 주요 통계.