Regression-Kriging 모형을 이용한 인구분포 추정에 관한 연구

Population Distribution Estimation Using Regression-Kriging Model

  • 투고 : 2010.11.09
  • 심사 : 2010.12.15
  • 발행 : 2010.12.31

초록

센서스 단위의 인구자료는 기초적인 인문사회 자료로 행정구역 단위로 요약되어 공간분석에 시용된다. 정밀한 인구 분포를 추정하기 위해 기존의 연구에서는 위성영상과 회귀분석 모형을 이용하였다. 하지만 회귀식에 의한 추정치는 공간자료의 공간적자기상관과 잔차 때문에 정확도에 있어 한계가 있었다. 본 연구는 회귀모형과 회귀모형에서 추출된 잔차에 대해 공간적자기상관을 고려하도록 크리깅 보간하는 RK모형(Regression Kriging Model)을 이용하여 인구분포의 추정 정확도를 향상하였다. RK모형을 적용하여 서울시의 4개구를 대상으로 사례분석을 하였으며, 모형의 효율성을 검증하기 위해 회귀분석만을 이용한 예측 결과와 RK모형을 이용한 예측 결과를 서로 비교하였다. 비교한 결과로 상관관계 계수 평균제곱근 오차, G 통계량 수치에서 RK모형의 추정 정확도가 기존의 회귀모형에 비해 높게 나온 것을 확인할수 있었다. 향후 정확한 인구추정을 위해 RK모형이 많이 활용될 수 있을 것이다.

Population data has been essential and fundamental in spatial analysis and commonly aggregated into political boundaries. A conventional method for population distribution estimation was a regression model with land use data, but the estimation process has limitation because of spatial autocorrelation of the population data. This study aimed to improve the accuracy of population distribution estimation by adopting a Regression-Kriging method, namely RK Model, which combines a regression model with Kriging for the residuals. RK Model was applied to a part of Seoul metropolitan area to estimate population distribution based on the residential zones. Comparative results of regression model and RK model using RMSE, MAE, and G statistics revealed that RK model could substantially improve the accuracy of population distribution. It is expected that RK model could be adopted actively for further population distribution estimation.

키워드

참고문헌

  1. Ahmed, S. and de Marsily, G., 1987, Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity, Water Resources Research, 23(9), 1717-1737. https://doi.org/10.1029/WR023i009p01717
  2. Bishop, T. F. A. and McBratney, A. B., 2001, A comparison of prediction methods for the creation of field-extent soil property maps, Geoderma, 103, 151-162.
  3. Burrough, P. and McDonnell, R., 1998, Principles of Geographical Information Systems, Oxford University Press, Oxford.
  4. Chen, K., 2002, An approach to linking remotely sensed data and areal census data, International Journal of Remote Sensing, 23, 37-48. https://doi.org/10.1080/01431160010014297
  5. Choi, J. G., 2007, Geostatistics, Sigmapress, Seoul (최종근, 2007, 지구통계학, 시그마프레스).
  6. Donnay, J. P. and Unwin, D., 2001, Modelling Geographical Distributions in Urban Areas, Remote Sensing and Urban Analysis, Taylor and Francis, New York, 205-224.
  7. Eldeiry, A. and Garcia, L. A., 2009, Comparison of regression kriging and cokriging techniques to estimate soil salinity using landsat images, Hydrology Days, 27-38.
  8. Fisher, P. F. and Langford, M., 1995, Modeling the errors in areal interpolation between zonal systems by Monte Carlo simulation, Environment and Planning A, 27, 211-224 . https://doi.org/10.1068/a270211
  9. Goodchild, M., Anselin, L., and Deichmann, U., 1993, A framework for the areal interpolation of socioeconomic data, Environment and Planning A, 25, 383-397 . https://doi.org/10.1068/a250383
  10. Griffith, D. A. and Can, A., 1996, Spatial statistical/econometric version of simple urban population density models, in Arlinghaus, S. L. and Griffith, D. A. (eds.) , Practical Handbook of Spatial Statistics, CRC Press.
  11. Harvey, J. T., 2002, Estimating census district populations from satellite imagery: Some approaches and limitations, International Journal of Remote Sensing, 23, 2071-2095. https://doi.org/10.1080/01431160110075901
  12. Hengl, T. 2009, A Practical Guide to Geostatistical Mapping, Lulu Enterprises, Inc.
  13. Hengl, T., Heuvelink, G. B. M., and Rossiter D. G., 2007, About regression-kriging: From equations to case studies, Computer & Geosciences, 33, 1301-1315. https://doi.org/10.1016/j.cageo.2007.05.001
  14. Hengl, T., Heuvelink, G. B. M., and Stein, A., 2003, Comparison of Kriging with External Drift and Regression-kriging, Technical note, lTC.
  15. Holt, J. B., Lo, C. P., and Hodler, T. W., 2004, Dasymetric estimation of population density and areal interpolation of census data, Cartography and Geographic Information Science, 31(2), 103-121. https://doi.org/10.1559/1523040041649407
  16. Jensen, J. R., 1983, Estimating census district populations from satellite imagery: Some approaches and densities, Transactions in GIS, 4(3), 217-234.
  17. Kim, H., 2006, Population estimation using land use and land cover data from Landsat TM images, The Geographical Journal of Korea, 40(4),489-496.
  18. Ku, C. Y., 2008, A Study on estimating the population in urban area with high resolution satellite image, The Geographical Journal of Korea, 42(1), 137-148.
  19. Lee, S. and Kim, K., 2007, Representing the population density distribution of Seoul using dasymetric mapping techniques in a GIS environment, Journal of the Korean Cartographic Association, 7(2), 53-67.
  20. Liu, X. H., Kyriakidis, P. C., and Goodchild, M. F., 2008, Population-density estimation using regression and area-ta-point residual kriging, International Journal of Geographical Information Science, 22(4),431-447. https://doi.org/10.1080/13658810701492225
  21. Liu, X. H., Clark, K., and Herold, M., 2006, Population density and image texture: A comparison study, Photogrammetric Engineering & Remote Sensing, 72(2), 187-196. https://doi.org/10.14358/PERS.72.2.187
  22. Lo, C. P., 1995, Automated population and dwelling unit estimation from high-resolution satellite images: A GIS approach, International Journal of Remote Sensing, 16(1), 17-34. https://doi.org/10.1080/01431169508954369
  23. Odeh, I., McBratney, A., and Chittleborough, D., 1994, Spatial prediction of soil properties from landform attributes derived from a digital elevation model, Geoderma, 63(3-4), 197-214. https://doi.org/10.1016/0016-7061(94)90063-9
  24. Okabe, A. and Sadahiro, Y., 1997, Variation in count data transferred from a set of irregular zones to a set of regular zones through the point-in-polygon method, International Journal of Geographical Information Science, 11(1), 93-106. https://doi.org/10.1080/136588197242518
  25. Openshaw, S., 1984, The modifiable areal unit problem, Concepts and Techniques in Modern Geography, 39(Norwich, UK: Geobooks).
  26. Reibel, M. and Bufalino, M, E., 2005, Street-weighted interpolation techniques for demographic count estimation in incompatible zone systems, Environment and Planning A, 37(1), 127-139. https://doi.org/10.1068/a36202
  27. Triantafilis, J., Odeh, I. O. A., and McBrantney, A. B., 2000, Five geostatistical models to predict soil salinity from electromagnetic induction data across irrigated cotton, Soil Science Society of America Journal, 65(3), 869-878.
  28. Wu, C. and Murray, A. T., 2005, A cokriging method for estimating population density in urban areas, Computer, Environment and Urban Systems, 29, 558-579. https://doi.org/10.1016/j.compenvurbsys.2005.01.006