Fluorescence-based Assay System for Endocannabinoid Degradation Enzyme, Fatty Acid Amide Hydrolase

  • Kim, Dae-Woong (Department of Life Science, Kyonggi University) ;
  • Kim, Gun-Joong (Department of Chemistry, Hankuk University of Foreign Studies) ;
  • Kim, Hae-Jo (Department of Chemistry, Hankuk University of Foreign Studies) ;
  • Ghil, Sung-Ho (Department of Life Science, Kyonggi University)
  • ;
  • ;
  • ;
  • 길성호 (경기대학교 생명과학과)
  • Received : 2010.10.29
  • Accepted : 2010.12.10
  • Published : 2010.12.31

Abstract

Endogenous cannabinoids (endocannabinoids) display various pharmacological effects including pain control, anti-inflammation, and neuroprotection. The synthesis and release of endocannabinoids are regulated under both physiological and pathological conditions. The main degrading enzyme of endocannabinoid is fatty acid amide hydrolase (FAAH). Therefore we have developed the fluorescence-based assay system for FAAH. We established stable CosM6 cell lines expressing human FAAH. We also synthesized 2-oxo-2H-chromen-7-yl decanoate (DAEC) as a fluorogenic substrate for FAAH. When crude membrane extracts stably expressing FAAH was incubated with DAEC at $25^{\circ}C$, FAAH reacted specifically to DAEC and catalyzes the hydrolysis of DAEC into decanoic acid and highly fluorescent coumarin. Furthermore, the serin hydrolase inhibitor, phenylmethanesulfonylfluoride, inhibited the coumarin release to the reaction buffer in concentration dependent manner. This assay system is suitable for high-throughput screening since this system has simple experimental procedure and measurement method.

Keywords

References

  1. Ahn K, Johnson DS, Fitzgerald LR, Liimatta M, Arendse A, Stevenson T, Lund ET, Nugent RA, Nomanbhoy TK, Alexander JP, Cravatt BF. Novel mechanistic class of fatty acid amide hydrolase inhibitors with remarkable selectivity. Biochemistry 2007. 46: 13019-13030. https://doi.org/10.1021/bi701378g
  2. Bisogno T, Ligresti A, Di Marzo V. The endocannabinoid signalling system: biochemical aspects. Pharmacol Biochem Behav. 2005.81: 224-238. https://doi.org/10.1016/j.pbb.2005.01.027
  3. Boldrup L, Wilson SJ, Barbier AJ, Fowler CJ A simple stopped assay for fatty acid amide hydrolase avoiding the use of a chloroform extraction phase. J Biochem Biophys Methods. 2004: 60:171-177. https://doi.org/10.1016/j.jbbm.2004.04.020
  4. Bracey MH, Hanson MA, Masuda KR, Stevens RC, Cravatt BF. Structural adaptations in a membrane enzyme that terminates endocannabinoid signaling. Science 2002. 298: 1793-1796. https://doi.org/10.1126/science.1076535
  5. Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 1996. 384: 83-87. https://doi.org/10.1038/384083a0
  6. Cravatt BF, Saghatelian A, Hawkins EG, Clement AB, Bracey MH, Lichtman AH. Functional disassociation of the central and peripheral fatty acid amide signaling systems. Proc Natl Acad Sci USA. 2004. 101: 10821-10826. https://doi.org/10.1073/pnas.0401292101
  7. De Bank PA, Kendall DA, Alexander SP. A spectrophotometric assay for tatty acid amide hydrolase suitable for high-throughput screening. Biochem Pharmacol. 2005. 69: 1187-1193. https://doi.org/10.1016/j.bcp.2005.01.012
  8. Deutsch DG, Chin SA. Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochem Pharmacol. 1993.46: 791-796. https://doi.org/10.1016/0006-2952(93)90486-G
  9. Ghil S, Choi JM, Kim SS, Lee YD, Liao Y, Bimbaumer L, Suh-Kim H. Compartmentalization of protein kinase A signaling by the heterotrimeric G protein Go. Proc Natl Acad Sci USA. 2006.103: 19158-19163. https://doi.org/10.1073/pnas.0609392103
  10. Hohmann AG, Suplita RL. Endocannabinoid mechanisms of pain modulation. AAPS J. 2006. 8: E693-708. https://doi.org/10.1208/aapsj080479
  11. Jayamanne A, Greenwood R, Mitchell VA, AsIan S, Piomelli D, Vaughan CW. Actions of the FAAH inhibitor URB597 in neuropathic and inflammatory chronic pain models. Br J Pharmacol. 2006. 147: 281-288. https://doi.org/10.1038/sj.bjp.0706510
  12. Labar G, Michaux C. Fatty acid amide hydrolase: from characterization to therapeutics. Chem Biodivers. 2007. 4: 1882-1902. https://doi.org/10.1002/cbdv.200790157
  13. Maccarrone M, Bari M, Agro AF. A sensitive and specific radiochromatographic assay of fatty acid amide hydrolase activity. Anal Biochem. 1999.267: 314-318. https://doi.org/10.1006/abio.1998.2964
  14. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990. 346: 561-564. https://doi.org/10.1038/346561a0
  15. Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993. 365: 61-65. https://doi.org/10.1038/365061a0
  16. Omeir RL, Chin S, Hong Y, Ahem DG, Deutsch DG. Arachidonoyl ethanolamide-[1,2-14C] as a substrate for anandamide amidase. Life Sci. 1995.56: 1999-2005. https://doi.org/10.1016/0024-3205(95)00181-5
  17. Patricelli MP, Cravatt BF. Characterization and manipulation of the acyl chain selectivity of fatty acid amide hydrolase. Biochemistry 2001. 40: 6107-6115. https://doi.org/10.1021/bi002578r
  18. Ramarao MK, Murphy EA, Shen MW, Wang Y, Bushell KN, Huang N, Pan N, Williams C, Clark JD. A fluorescence-based assay for fatty acid amide hydrolase compatible with high-throughput screening. Anal Biochem. 2005. 343: 143-151. https://doi.org/10.1016/j.ab.2005.04.032
  19. Timmons A, Seierstad M, Apodaca R, Epperson M, Pippel D, Brown S, Chang L, Scott B, Webb M, Chaplan SR, Breitenbucher JG. Novel ketooxazole based inhibitors of fatty acid amide hydrolase (FAAH). Bioorg Med Chem Lett. 2008. 18: 2109-2113. https://doi.org/10.1016/j.bmcl.2008.01.091
  20. Ueda N, Puffenbarger RA, Yamamoto S, Deutsch DG. The fatty acid amide hydrolase (FAAH). Chern Phys Lipids. 2000. 108:107-121. https://doi.org/10.1016/S0009-3084(00)00190-0
  21. Wilson SJ, Lovenberg TW, Barbier AJ. A high-throughput-compatible assay for determining the activity of fatty acid amide hydrolase. Anal Biochem. 2003. 318: 270-275. https://doi.org/10.1016/S0003-2697(03)00217-3
  22. Zhang D, Saraf A, Kolasa T, Bhatia P, Zheng GZ, Patel M, Lannoye GS, Richardson P, Stewart A, Rogers JC, Brioni JD, Surowy CS. Fatty acid amide hydrolase inhibitors display broad selectivity and inhibit multiple carboxylesterases as off-targets. Neuropharmacology 2007. 52: 1095-1105. https://doi.org/10.1016/j.neuropharm.2006.11.009