DOI QR코드

DOI QR Code

Synthesis and 3D-QSARs Analyses of Herbicidal O,O-Dialkyl-1-phenoxyacetoxy-1-methylphosphonate Analogues as a New Class of Potent Inhibitors of Pyruvate Dehydrogenase

  • Soung, Min-Gyu (Department of Applied Biology and Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Hwang, Tae-Yeon (Department of Applied Biology and Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Sung, Nack-Do (Department of Applied Biology and Chemistry, College of Agriculture and Life Science, Chungnam National University)
  • Received : 2009.10.22
  • Accepted : 2010.02.25
  • Published : 2010.05.20

Abstract

A series of O,O-dialkyl-1-phenoxyacetoxy-1-methylphosphonate analogues (1~22) as a new class of potent inhibitors of pyruvate dehydrogenase were synthesized and 3D-QSARs (three dimensional qantitative structure-activity relationships) models on the pre-emergency herbicidal activity against the seed of cucumber (Cucumus Sativa L.) were derived and discussed quantitatively using comparative molecular field analysis (CoMFA) and comparative molecular similarity indeces analysis (CoMSIA) methods. The statistical values of CoMSIA models were better predictability and fitness than those of CoMFA models. The inhibitory activities according to the optimized CoMSIA model I were dependent on the electrostatic field (41.4%), the H-bond acceptor field (26.0%), the hydrophobic field (20.8%) and the steric field (11.7%). And also, it was found that the optimized CoMSIA model I with the sensitivity to the perturbation ($d_q{^{2'}}/dr^2{_{yy'}}$ = 0.830) and the prediction ($q^2$ = 0.503) produced by a progressive scrambling analyses were not dependent on chance correlation. From the results of graphical analyses on the contour maps with the optimized CoMSIA model I, it is expected that the structural distinctions and descriptors that subscribe to herbicidal activities will be able to apply new an herbicide design.

Keywords

References

  1. Yoshiba, Y.; Kiyosue, T.; Nakashima, K.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Plant Cell Physiol.1997, 38, 1095-1102. https://doi.org/10.1093/oxfordjournals.pcp.a029093
  2. Hare, P. D.; Cress, W. A. Plant Growth Regul. 1997, 21, 79-102. https://doi.org/10.1023/A:1005703923347
  3. Hare, P. D.; Cress, W. A. V.; Staden, J. Plant Growth Regul. 2003, 39, 41-50. https://doi.org/10.1023/A:1021835902351
  4. Schwacke, R.; Grallath, S.; Breitkreuz, K. E.; Stransky, E.; Stransky, H.; Frommer, W. B.; Rentsch, D. Plant Cell 1999, 11, 377-391. https://doi.org/10.1105/tpc.11.3.377
  5. Giuseppe, F.; Samuele, G. I.; Lukasz, B.; Davide, P.; Pawel, K. J. Agric. Food Chem. 2007, 55, 4340-4347. https://doi.org/10.1021/jf0701032
  6. Gohda, K.; Kimura, Y.; Mori, I.; Ohta, D.; Kikuchi, T. Biochim. Biophys. Acta 1998, 1385, 107-114. https://doi.org/10.1016/S0167-4838(98)00049-1
  7. Hawkes, T. R.; Cox, J. M.; Barnes, N. J.; Beautement, K.; Edwards, L. S.; Kipps, M. R.; Langford, M. P.; Lewis, T.; Ridley, S. M.; Thomas, P. G. Proceedings of the Brighton Crop Protection Conference 1993, 6, 739-744.
  8. Gutowski, J. A.; Lienhard, G. E. J. Biol. Chem. 1976, 251, 2863- 2866.
  9. Dobritzsch, D.; Konig, S.; Schneider, G.; Lu, G. J. Biol. Chem. 1998, 273, 20196-20204. https://doi.org/10.1074/jbc.273.32.20196
  10. Kluger, R.; Pike, D. C. J. Am. Chem. Soc. 1977, 99, 4504-4057. https://doi.org/10.1021/ja00455a052
  11. Mahler, H. R.; Cordes, E. H. In Biological Chemistry, 2nd ed.; Harper and Row: New York, 1971; p 519.
  12. Koike, M.; Reed, L. J.; Caroll, W. R. J. Biol. Chem. 1963, 238, 30-39.
  13. Alvarez, F. J.; Ermer, J.; Hubner, G.; Schellenberger, A.; Schowen, R. L. J. Am. Chem. Soc. 1991, 113, 8402-8409. https://doi.org/10.1021/ja00022a030
  14. Kern, D.; Kern, G.; Neef, H.; Tittmann, K.; Killenberg-Jabs, M.; Schneider, C. W.; Hubner, G. Science 1997, 275, 67-70. https://doi.org/10.1126/science.275.5296.67
  15. Baillie, A. C.; Wright, K.; Wright, B. J.; Earnshaw, C. G. Pestic. Biochem. Physiol. 1988, 30, 103-112. https://doi.org/10.1016/0048-3575(88)90044-2
  16. He, H. W.; Wang, J.; Liu, Z. J. J. Org. Chem. 2001, 21, 878-883.
  17. Wang, T.; He, H. W.; Yuan, J. L. J. Appl. Chem. 2003, 20, 613-617.
  18. He, H. W.; Wang, T.; Yuan, Z. L. J. Organometallic Chem. 2005, 690, 2608-2613. https://doi.org/10.1016/j.jorganchem.2005.01.061
  19. Lee, E. T.; Kim, S. D. Kor. J. Appl. Microbiol. Biotechnol. 2000, 28, 334-340.
  20. He, H. W.; Chen, T.; Li, Y. J. Pesticide Sci. 2007, 32, 42-44. https://doi.org/10.1584/jpestics.G06-05
  21. Kubinyi, H. In 3D QSAR in Drug Design, Theory, Methods and Applications; Ludwigshafen: ESCOM Leiden, Germany, 1993.
  22. Sung, N. D.; Jang, S. C.; Hwang, T. Y. Korean J. Pestic. Sci. 2007, 11, 72-81.
  23. Chen, T.; Shen, P.; Li, Y.; He, H. W. Phos. Sul. Silic. 2006, 181, 2135-2145. https://doi.org/10.1080/10426500600614253
  24. Peng, H.; Wang, T.; Xie, P.; Chen, T.; He, H. W.; Wan, J. J. Agric. Food Chem. 2007, 55, 1871-1880. https://doi.org/10.1021/jf062730h
  25. Tripos, Molecular modeling and QSAR software on CD-Rom (Ver. 8.0); Tripos Associates, Inc.: 1699 S. Hanley Road, Suite 303, St. Louis, MO., U.S.A.
  26. Soung, M. G.; Lee, Y. J.; Sung, N. D. Bull. Korean Chem. Soc. 2009, 30, 613-617. https://doi.org/10.5012/bkcs.2009.30.3.613
  27. Marshall, G. R.; Barry, C. D.; Bosshard, H. E.; Dammkoehler, R. A.; Dunn, D. A. In computer-assisted drug design: The conformational parameter in drug design; active analog approach; Olsen, E. C., Christoffersen, R. E., Eds.; American Chemical Society: Washington, D. C., 1979; p 205.
  28. Purcell, W. P.; Singer, J. A. J. Chem. Eng. Data 1967, 122, 235- 246.
  29. Clark, M.; Cramer, R. D., III.; Jones, D. M.; Patterson, D. E.; Simeroth, P. E. Tetrahedron Comput. Methodol. 1990, 3, 47-59. https://doi.org/10.1016/0898-5529(90)90120-W
  30. Cramer, R. D.; Bunce, J. D.; Patterson, D. E. Quant. Struct. Act. Relat. 1988, 7, 18-25. https://doi.org/10.1002/qsar.19880070105
  31. Clark, R. D.; Fox, P. C. J. Computer-Aided molecular Design 2004, 18, 563-576. https://doi.org/10.1007/s10822-004-4077-z
  32. Juan, A. A. S.; Cho, S. J. J. Mol. Model. 2007, 13, 601-610. https://doi.org/10.1007/s00894-007-0172-0
  33. Ashek, A.; Cho, S. J. Bioorg. & Med. Chem. 2005, 14, 1474-1482. https://doi.org/10.1016/j.bmc.2005.10.001

Cited by

  1. A perspective on the role of quantitative structure-activity and structure-property relationships in herbicide discovery vol.68, pp.4, 2012, https://doi.org/10.1002/ps.3256
  2. CoMSIA Study of a Series of N-Dichloroacetyl Oxazolidine Derivatives vol.195-196, pp.1662-7482, 2012, https://doi.org/10.4028/www.scientific.net/AMM.195-196.380
  3. Synthesis and Reactions of α-Hydroxyphosphonates vol.23, pp.6, 2018, https://doi.org/10.3390/molecules23061493