DOI QR코드

DOI QR Code

31P NMR and ESI-MS Study of Fenitrothion-Copper Ion Complex: Experimental and Theoretical Study

  • Choi, Ho-June (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University) ;
  • Yang, Ki-Yull (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University) ;
  • Park, Jong-Keun (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University) ;
  • Koo, In-Sun (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University)
  • Received : 2010.02.02
  • Accepted : 2010.03.18
  • Published : 2010.05.20

Abstract

$^{31}P$ NMR and ESI-MS studies of $Cu^{2+}$ binding to Fenitrothion (FN) were performed by experimentally and theoretically. The calculated $^{31}P$ NMR chemical shifts for FN-$Cu^{2+}$ complexes are in good agreement with experimental chemical shifts in order, and the results present an important information for organophosphorus pesticide metal complexes. ESI-MS and low energy CID MS/MS experiments of FN-$Cu^{2+}$ complexes combined with accurate mass measurements give insight into the metal localization and allow unambiguous identification of fragments and hydrolysis products.

Keywords

References

  1. Simo, O.; Pehkonen,; Zaher, M. A. Judeh, Environ. Sci. Technol. 2005, 39, 2586. https://doi.org/10.1021/es0486869
  2. Ohshiro, K.; Kakuta, T.; Sakai, T.; Hirota, H.; Hoshino, T.; Uchiyama, T. J. Fermentation & Bioengineering 1996, 82, 299. https://doi.org/10.1016/0922-338X(96)88823-4
  3. Lartiges, S. B.; Garrigues, P. P. Environ. Sci. Technol. 1995, 29, 1246. https://doi.org/10.1021/es00005a016
  4. Lacorte, S.; Barcelo', D. Environ. Sci. Technol. 1994, 28, 1159. https://doi.org/10.1021/es00055a029
  5. Durand, G.; Mansour, M.; Barcelo', D. Anal. Chim. Acta 1992, 262, 167. https://doi.org/10.1016/0003-2670(92)80021-X
  6. Xiumei, H. MS. Thesis, Queen’s University, Department of Chemistry, Kingston, ON, Canada, 2002.
  7. Balakrishnan, V. K.; Han, X.; vanLoon, G. W.; Dust, J. M.; Toullec, J.; Buncel, E. Langmuir 2004, 20, 6586. https://doi.org/10.1021/la049572d
  8. Balakrishnan, V. K.; Dust, J. M.; vanLoon, G. W.; Buncel, E. L Can. J. Chem. 2001, 79, 6586.
  9. Eneji, I. S.; Buncel, E.; vanLoon, G. W. J. Agric. Food Chem. 2002, 50, 5624.
  10. Balakrishnan, V. K.; Buncel, E.; vanLoon, G. W. Environ. Sci. Technol. 2005, 39, 5824. https://doi.org/10.1021/es050234o
  11. Dunn, E. J.; Moir, R. Y.; Buncel, E.; Purdon, J. G.; Bannard, R. A. B. Can. J. Chem. 1990, 68, 1837. https://doi.org/10.1139/v90-286
  12. Esbata, A. A. Ph. D. Thesis, Queen’s University, Department of Chemistry, Kingston, On. 2005.
  13. Tomlin, C., Ed.; The Pesticides Manual, 10th ed.; Royal Society of Chemistry: London, 1994.
  14. Greenhalgh, R.; Dhawan, K. L.; Weinberger, P. J. Agric. Food Chem. 1980, 28, 102. https://doi.org/10.1021/jf60227a016
  15. Wan, H. B.; Wong, M. K.; Mok, C. Y. Pesticide Sci. 1994, 42, 93. https://doi.org/10.1002/ps.2780420205
  16. Mortland, M. M.; Raman, K. V. J. Agric. Food Chem. 1967, 15(2), 163. https://doi.org/10.1021/jf60149a015
  17. Blanchet, P.-F.; St-George, Pestic. Sci. 1982, 13(1), 85. https://doi.org/10.1002/ps.2780130113
  18. Dust, J. M.; Warren, C. S. Water Qual. Res. J. Can. 2001, 36, 589.
  19. Omakor, J. E.; Onyido, I.; vanLoon, G. W.; Buncel, E. J. Chem. Soc., Perkin Trans. 2 2001, 324
  20. Onyido, I.; Omakor, J. E.; van-Loon, G. W.; Buncel, E. Arkivoc 2001, 2, 134.
  21. Smolen J. M.; Stone, A. T. Environ. Sci. Technol. 1997, 31(6), 1664. https://doi.org/10.1021/es960499q
  22. Esbata, A. A. Ph.D. Thesis, Queen’s University, Department of Chemistry, Kingston, ON, Canada, 2005.
  23. Faut, S. D.; Gomaa, H. M. Environ. Lett. 1972, 3, 171. https://doi.org/10.1080/00139307209435465
  24. Koo, I. S.; Ali, D.; Yang, K.; Park, Y.; Wardlaw, D. M.; Buncel, E. Bull. Korean Chem. Soc. 2008, 29, 725. https://doi.org/10.5012/bkcs.2008.29.4.725
  25. Koo, I. S.; Ali, D.; Yang, K.; Park, Y.; Esbata, A.; vanLoon, G. W.; Buncel, E. Can. J. Chem. 2009, 87, 433. https://doi.org/10.1139/V08-178
  26. Koo, I. S.; Ali, D.; Yang, K.; Park, Y.; vanLoon, G. W.; Buncel, E. Bull. Korean Chem. Soc. 2009, 30, 1257. https://doi.org/10.5012/bkcs.2009.30.6.1257
  27. Hesse, M.; Meier, H.; Zeeh, B. Spectroscopy Methods in Organic Chemistry. Thieme Foundations of Organic Chemistry Series; Enders, D., Noyori, R., Trost, B. M., Eds.; G. T. Verlag: Berlin, Germany, 1997.
  28. Mortimer, R. D.; Dawson, B. A. J. Agric. Food Chem. 1991, 39, 911. https://doi.org/10.1021/jf00005a022
  29. Miyata, Y.; Ando, H. J. Toxicol. Enviro. Health 1994, 40(1), 49.
  30. Greenhalgh, R. et al J. Agric. Food Chem. 1983, 31, 710. https://doi.org/10.1021/jf00118a008
  31. Mahajana, M.; Quistad, G. B.; Casida, J. E. Chem. Res. Toxicol. 1996, 9, 1202. https://doi.org/10.1021/tx9600715
  32. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adame, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Salvador, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.7: Gaussian, Inc., Pittsburgh, PA, 1998.
  33. Becke, A. D. J. Chem. Phys. 1933, 98, 5648. https://doi.org/10.1063/1.464913
  34. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  35. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. https://doi.org/10.1063/1.448975
  36. Ruud, K.; Helgaker, T.; Bak, K. L.; Jørgensen, P.; Jensen, H. J. A. J. Chem. Phys. 1993, 99, 3847. https://doi.org/10.1063/1.466131
  37. Pearson R. G. J. Am. Chem. Soc. 1963, 85, 3533. https://doi.org/10.1021/ja00905a001
  38. Pearson, R. G. Science 1966, 151, 172. https://doi.org/10.1126/science.151.3707.172
  39. Zeinali M.; Torrents A. Environ. Sci. Technol. 1988, 32, 2238. https://doi.org/10.1021/es980018y
  40. Weast R. C. Handbook of Chemistry and Physics, 50th ed.; The Chemical Rubber Co.: Cleveland, Ohio, 1969.

Cited by

  1. Nucleophilic Degradation of Fenitrothion Insecticide and Performance of Nucleophiles: A Computational Study vol.116, pp.10, 2012, https://doi.org/10.1021/jp2100057
  2. A nanocomposite of copper(ii) functionalized graphene and application for sensing sulfurated organophosphorus pesticides vol.37, pp.12, 2013, https://doi.org/10.1039/c3nj00528c
  3. Gas-phase copper and silver complexes with phosphorothioate and phosphorodithioate pesticides investigated using electrospray ionization mass spectrometry vol.50, pp.1, 2015, https://doi.org/10.1002/jms.3507
  4. Silver ion binding to the organophosphorus pesticide diazinon and hydrolytic pathways revealed by mass spectrometric and NMR studies vol.93, pp.11, 2010, https://doi.org/10.1139/cjc-2015-0248