DOI QR코드

DOI QR Code

Preparation and Characterization of Spherical Carbon Composite for Use as Anode Material for Lithium Ion Batteries

  • Ahn, Byoung-Hoon (Department of Advanced Materials Science and Engineering, Kangwon National University) ;
  • Lee, Sung-Man (Department of Advanced Materials Science and Engineering, Kangwon National University)
  • Received : 2010.01.28
  • Accepted : 2010.03.18
  • Published : 2010.05.20

Abstract

A novel spherical carbon composite material, in which nanosized disordered carbons are dispersed in a soft carbon matrix, has been prepared and investigated for use as a potential anode material for lithium ion batteries. Disordered carbons were synthesized by ball milling natural graphite in air. The composite was prepared by mixing the ball-milled graphite with petroleum pitch powder, pelletizing the mixture, and pyrolyzing the pellets at $1200^{\circ}C$ in an argon flow. The ballmilled graphite consists of distorted nanocrystallites and amorphous phases. In the composite particle, nanosized flakes are uniformly distributed in a soft carbon matrix, as revealed by X-ray diffractometer (XRD) and transmission electron microscopy (TEM) experiments. The composite is compatible with a pure propylene carbonate (PC) electrolyte and shows high rate capability and excellent cycling performance. The electrochemical properties are comparable to those of hard carbon.

Keywords

References

  1. Zaghib, K.; Brochu, F.; Guerfi, A.; Kinoshita, K. J. Power Sources 2001, 103, 103.
  2. Horiba, T.; Maeshima, T.; Matsumura, T.; Koseki, M.; Arai, J.; Muranaka, Y. J. Power Sources 2005, 146, 107. https://doi.org/10.1016/j.jpowsour.2005.03.205
  3. Arakawa, M.; Yamaki, J. J. Electroanal. Chem. 1987, 219, 273. https://doi.org/10.1016/0022-0728(87)85045-3
  4. Chung, G.; Jun, S.; Lee, K.; Kim, M. J. Electrochem. Soc. 1999, 146, 1664. https://doi.org/10.1149/1.1391823
  5. Yoshio, M.; Wang, H.; Lee, Y. S.; Fukuda, K. Electrochim. Acta 2003, 48, 791. https://doi.org/10.1016/S0013-4686(02)00748-X
  6. Habazaki, H.; Kiriu, M.; Konno, H. Electrochem. Commun. 2006, 8, 1275. https://doi.org/10.1016/j.elecom.2006.06.012
  7. Bueno, P. R.; Leite, E. R. J. Phys. Chem. B 2003, 107, 8868. https://doi.org/10.1021/jp034513e
  8. Fukunaga, T.; Nagano, K.; Mizutani, U.; Wakayama, H.; Fukushima, Y. J. Non-Cryst. Solids 1998, 232-234, 416. https://doi.org/10.1016/S0022-3093(98)00495-5
  9. Wakayama, H.; Mizuno, J.; Fukushima, Y.; Nagano, K.; Fukunaga, T.; Mizutani, U. Carbon 1999, 37, 947. https://doi.org/10.1016/S0008-6223(98)00249-8
  10. Ong, T. S.; Yang, H. Carbon 2000, 38, 2077. https://doi.org/10.1016/S0008-6223(00)00064-6
  11. Lee, K. M.; Oh, S. M.; Lee, S. M. Bull. Korean Chem. Soc. 2008, 29, 1121. https://doi.org/10.5012/bkcs.2008.29.6.1121
  12. Welham, N. J.; Berbenni, V.; Chapman, P. G. J. Alloy Compd. 2003, 349, 255. https://doi.org/10.1016/S0925-8388(02)00880-0
  13. Natarajan, C.; Fujimoto, H.; Mabuchi, A.; Tokumitsu, K.; Kasuh, T. J. Power Sources 2001, 92, 187. https://doi.org/10.1016/S0378-7753(00)00528-0
  14. Aladeromo, J. B.; Bragg, R. H. Carbon 1990, 28, 897. https://doi.org/10.1016/0008-6223(90)90338-Y
  15. Zhou, W. L.; Ikuhara, Y.; Zhao, W.; Tang, J. Carbon 1995, 33, 1177. https://doi.org/10.1016/0008-6223(95)91247-5