DOI QR코드

DOI QR Code

Effects of Boronic Acid on the Fluoride-selective Chemosignaling Behavior of a Merocyanine Dye

  • Received : 2010.01.31
  • Accepted : 2010.03.15
  • Published : 2010.05.20

Abstract

The effects of boronic acid on the fluoride-selective chemosignaling behavior of a merocyanine dye were investigated. In the presence of phenylboronic acid (PBA), N-methylquinolinium-based merocyanine dye displayed fluoride-selective chromogenic signaling behavior over other commonly coexisting anions in the micromolar concentration range. Signaling is produced by a fluoride-induced displacement of the dye from its complex with PBA, resulting in a significant chromogenic signal for the fluoride ion. This signaling was successfully analyzed using a ratiometric analysis of the UV-vis absorption in response to changes in fluoride ion concentration. A PBA substituted with an electron withdrawing group was found to exhibit a more pronounced signal. Polymer-bound PBA also exhibited useful fluoride-selective signaling behavior.

Keywords

References

  1. Binachi, A.; Bowman-James, K.; Garcia-Espana, E. Supramolecular Chemistry for Anions; John Wiley & Sons: New York, 1997.
  2. Stibor, I. Anion Sensing, Topics in Current Chemistry 255; Springer-Verlag: New York, 2005.
  3. Sessler, J. L.; Davis, J. M. Acc. Chem. Res. 2001, 34, 989. https://doi.org/10.1021/ar980117g
  4. Martinez-Manez, R.; Sancenon, F. Chem. Rev. 2003, 103, 4419. https://doi.org/10.1021/cr010421e
  5. Gunnlaugsson, T.; Glynn, M.; Tocci, G. M.; Kruger, P. E.; Pfeffer, F. M. Coord. Chem. Rev. 2006, 250, 3094. https://doi.org/10.1016/j.ccr.2006.08.017
  6. Ayoob, S.; Gupta, A. K. Crit. Rev. Environ. Sci. Technol. 2006, 36, 433. https://doi.org/10.1080/10643380600678112
  7. Bassin, E. B.; Wypij, D.; Davis, R. B. Cancer Cause Control 2006, 17, 421. https://doi.org/10.1007/s10552-005-0500-6
  8. Yu, Y.; Yang, W.; Dong, Z.; Wan, C.; Zhang, J.; Liu, J.; Xiao, K.; Huang, Y.; Lu, B. Fluoride 2008, 41, 134.
  9. Badr, I. H. A.; Meyerhoff, M. E. Anal. Chem. 2005, 77, 6719. https://doi.org/10.1021/ac050987t
  10. Cho, E. J.; Moon, J. W.; Ko, S. W.; Lee, J. Y.; Kim, S. K.; Yoon, J.; Nam, K. C. J. Am. Chem. Soc. 2003, 125, 12376. https://doi.org/10.1021/ja036248g
  11. Xu, Z.; Kim, S. K.; Han, S. J.; Lee, C.; Kociok-Kohn, G.; James, T. D.; Yoon, J. Eur. J. Org. Chem. 2009, 3058.
  12. Yeo, H. M.; Ryu, B. J.; Nam, K. C. Org. Lett. 2008, 10, 2931. https://doi.org/10.1021/ol801153d
  13. Cametti, M.; Rissanen, K. Chem. Commun. 2009, 2809.
  14. Zhang, X.; Shiraishi, Y.; Hirai, T. Tetrahedron Lett. 2007, 48, 8803. https://doi.org/10.1016/j.tetlet.2007.10.086
  15. Kim, S. K.; Yoon, J. Chem. Commun. 2002, 770.
  16. Pohl, R.; Aldakov, D.; Kubát, P.; Jursíková, K.; Marquez, M.; Anzenbacher, P., Jr. Chem. Commun. 2004, 1282.
  17. Lee, M. H.; Quang, D. T.; Jung, H. S.; Yoon, J.; Lee, C.-H.; Kim, J. S. J. Org. Chem. 2007, 72, 4242. https://doi.org/10.1021/jo070361y
  18. Coskun, A.; Akkaya, E. U. Tetrahedron Lett. 2004, 45, 4947. https://doi.org/10.1016/j.tetlet.2004.04.130
  19. Xu, S.; Chen, K.; Tian, H. J. Mater. Chem. 2005, 15, 2676. https://doi.org/10.1039/b501159k
  20. Kim, S. Y.; Hong, J.-I. Org. Lett. 2007, 9, 3109. https://doi.org/10.1021/ol0711873
  21. Kim, S. Y.; Park, J.; Koh, M.; Park, S. B.; Hong, J.-I. Chem. Commun. 2009, 4735.
  22. Yang, X.-F.; Ye, S.-J.; Bai, Q.; Wang, X.-Q. J. Fluoresc. 2007, 17, 81. https://doi.org/10.1007/s10895-006-0140-6
  23. Yang, X.-F. Spectrochim. Acta A 2007, 67, 321. https://doi.org/10.1016/j.saa.2006.07.020
  24. Kim, T.-H.; Swager, T. M. Angew. Chem. Int. Ed. 2003, 42, 4803. https://doi.org/10.1002/anie.200352075
  25. Hudnall, T. W.; Chiu, C.-W.; Gabbai, F. P. Acc. Chem. Res. 2009, 42, 388. https://doi.org/10.1021/ar8001816
  26. Kim, Y.; Gabbaï, F. P. J. Am. Chem. Soc. 2009, 131, 3363. https://doi.org/10.1021/ja8091467
  27. Yamaguchi, S.; Akiyama, S.; Tamao, K. J. Am. Chem. Soc. 2001, 123, 11372. https://doi.org/10.1021/ja015957w
  28. Swamy, K. M. K.; Lee, Y. J.; Lee, H. N.; Chun, J.; Kim, Y.; Kim, S.-J.; Yoon, J. J. Org. Chem. 2006, 71, 8626. https://doi.org/10.1021/jo061429x
  29. Liu, Z.-Q.; Shi, M.; Li, F.-Y.; Fang, Q.; Chen, Z.-H.; Yi, T.; Huang, C.-H. Org. Lett. 2005, 7, 5481. https://doi.org/10.1021/ol052323b
  30. Neumann, T.; Dienes, Y.; Baumgartner, T. Org. Lett. 2006, 8, 495. https://doi.org/10.1021/ol052911p
  31. Nicolini, J.; Testoni, F. M.; Schuhmacher, S. M.; Machado, V. G. Tetrahedron Lett. 2007, 48, 3467. https://doi.org/10.1016/j.tetlet.2007.03.020
  32. Linn, M. M.; Poncio, D. C.; Machado, V. G. Tetrahedron Lett. 2007, 48, 4547. https://doi.org/10.1016/j.tetlet.2007.04.141
  33. Coe, B. J.; Foxon, S. P.; Harper, E. C.; Harris, J. A.; Helliwell, M.; Raftery, J.; Asselberghs, I.; Clays, K.; Franz, E.; Brunschwig, B. S.; Fitch, A. G. Dyes Pigm. 2009, 82, 171. https://doi.org/10.1016/j.dyepig.2008.12.010
  34. Kuzmic, P. Anal. Biochem. 1996, 237, 260. https://doi.org/10.1006/abio.1996.0238
  35. Shortreed, M.; Kopelman, R.; Kuhn, M.; Hoyland, B. Anal. Chem. 1996, 68, 1414. https://doi.org/10.1021/ac950944k

Cited by

  1. Fluorescence and Colorimetric Chemosensors for Fluoride-Ion Detection vol.114, pp.10, 2014, https://doi.org/10.1021/cr400352m
  2. ChemInform Abstract: Effects of Boronic Acid on the Fluoride-Selective Chemosignaling Behavior of a Merocyanine Dye. vol.41, pp.39, 2010, https://doi.org/10.1002/chin.201039221