DOI QR코드

DOI QR Code

Synthesis of Novel H8-Binaphthol-based Chiral Receptors and Their Applications in Enantioselective Recognition of 1,2-Amino alcohols and Chirality Conversion of L-Amino acids to D-Amino acids

  • Jung, Hye-In (Department of Chemistry and Nano Science (BK21), Ewha Womans University) ;
  • Nandhakumar, Raju (Department of Chemistry and Nano Science (BK21), Ewha Womans University) ;
  • Yoon, Hoe-Jin (Department of Chemistry and Nano Science (BK21), Ewha Womans University) ;
  • Lee, Sang-Gi (Department of Chemistry and Nano Science (BK21), Ewha Womans University) ;
  • Kim, Kwan-Mook (Department of Chemistry and Nano Science (BK21), Ewha Womans University)
  • Received : 2010.02.08
  • Accepted : 2010.03.10
  • Published : 2010.05.20

Abstract

Novel $H_8$-binaphthol-based chiral receptors appended with an uryl moiety (2a) and a guanidinium moiety (2b) have been designed and synthesized for the enantioselective recognition of 1,2-amino alcohols via reversible imine formation. The selectivities ($K_R/K_S$ = 9.8 ~ 19.4) of 2b in imine formation with 1,2-amino alcohols are higher than those of 2a ($K_R/K_S$ = 1.8 ~ 4.5). Similar efficiency trend have been observed in the conversion of L-amino acids to D-amino acids, i.e., the efficiency of the receptor 2b (D/L ratio: 4.3 ~ 10.1) is superior to 2a (D/L ratio: 4.0 ~ 8.7).

Keywords

References

  1. Coppola, G. M.; Schuster, H. F. Asymmetric Synthesis: Construction of Chiral Molecules Using Amino Acids; Wiley: New York, NY, 1987.
  2. Bergmeier, S. C. Tetrahedron 2000, 56, 2561. https://doi.org/10.1016/S0040-4020(00)00149-6
  3. Noyori, R. Asymmetric Catalysis in Organic Synthesis; John Wiley and Sons: New York, NY, 1994.
  4. Helmchen, G.; Pfaltz, A. Acc. Chem. Res. 2000, 33, 336. https://doi.org/10.1021/ar9900865
  5. Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835. https://doi.org/10.1021/cr9500038
  6. Wang, Q.; Chen, X.; Tao, L.; Wang, L.; Xiao, D.; Yu, X.-Q; Pu, L. J. Org. Chem. 2007, 72, 97. https://doi.org/10.1021/jo061769i
  7. Dai, Z.; Xu, X.; Canary, J. W. Chirality 2005, 17, S227. https://doi.org/10.1002/chir.20130
  8. Lee, S. J.; Lin, W. J. Am. Chem. Soc. 2002, 124, 4554. https://doi.org/10.1021/ja0256257
  9. Liu, Y.; Li, B.; Wada, T.; Inoue, Y. Tetrahedron 2001, 57, 7153. https://doi.org/10.1016/S0040-4020(01)00671-8
  10. Folmer-Andersen, J. F.; Lynch, V. M.; Anslyn, E. V. J. Am. Chem. Soc. 2005, 127, 7986. https://doi.org/10.1021/ja052029e
  11. Breccia, P.; Van Gool, M.; Perez-Fernandez, R.; Martin-Santamaria, S.; Gago, F.; Prados, P.; Mendoza, J. J. Am. Chem. Soc. 2003, 125, 8270. https://doi.org/10.1021/ja026860s
  12. Oliva, A. I.; Simon, L.; Hernandez, J. V.; Muniz, F. M.; Lithgow, A.; Jimenez, A.; Moran, J. R. J. Chem. Soc., Perkin Trans. 2 2002, 1050.
  13. Osawa, T.; Shirasaka, K.; Matsui, T.; Yoshihara, S.; Akiyama, T.; Hishiya, T.; Asanuma, H.; Komiyama, M. Macromolecules 2006, 39, 2460. https://doi.org/10.1021/ma060064f
  14. Tsubaki, K.; Tanima, D.; Nuruzzaman, M.; Kusumoto, T.; Fuji, K.; Kawabata, T. J. Org. Chem. 2005, 70, 4609. https://doi.org/10.1021/jo050387u
  15. Famulok, M. Science 1996, 272, 1343. https://doi.org/10.1126/science.272.5266.1343
  16. Chin, J.; Lee, S. S.; Lee, K. J.; Park, S.; Kim, D. H. Nature 1999, 401, 254. https://doi.org/10.1038/45751
  17. Bradshaw, J. S.; Izatt, R. M.; Bordunov, A. V.; Zhu, C. Y.; Hathaway, J. K. Comprehensive Supramolecular Chemistry; Gokel, G. W., Ed.; Pergamon: New York, NY, 1996; Vol. 1, pp 35-95.
  18. Zhang, X. X.; Bradshaw, J. S.; Izatt, R. M. Chem. Rev. 1997, 97, 3313. https://doi.org/10.1021/cr960144p
  19. Kim, J.; Raman, B.; Ahn. K. H. J. Org. Chem. 2006, 71, 38. https://doi.org/10.1021/jo051630s
  20. Kim, S.-G.; Kim, K.-H.; Kim, Y. K.; Shin, S. K.; Ahn, K. H. J. Am. Chem. Soc. 2003, 125, 13819. https://doi.org/10.1021/ja037031p
  21. Hirose, K.; Fujiwara, A.; Matsunaga, K.; Aoki, N.; Tobe, Y. Tetrahedron Lett. 2002, 43, 8539. https://doi.org/10.1016/S0040-4039(02)02030-0
  22. Kurtán, T.; Nesnas, N.; Li, Y.-Q.; Huang, X.; Nakanishi, K.; Berova, N. J. Am. Chem. Soc. 2001, 123, 5962. https://doi.org/10.1021/ja010249w
  23. Cram, D. J. Angew. Chem., Int. Ed. Engl. 1988, 27, 1009. https://doi.org/10.1002/anie.198810093
  24. Lehn, J.-M. Angew. Chem., Int. Ed. Engl. 1988, 27, 89. https://doi.org/10.1002/anie.198800891
  25. Meyer, C. D.; Joiner, C. S.; Stoddart, J. F. Chem. Soc. Rev. 2007, 36, 1705. https://doi.org/10.1039/b513441m
  26. Feuster, E. K.; Glass, T. E. J. Am. Chem. Soc. 2003, 125, 16174. https://doi.org/10.1021/ja036434m
  27. Kim, K. M.; Park, H.; Kim, H.-J.; Chin, J.; Nam, W. Org. Lett. 2005, 7, 3525. https://doi.org/10.1021/ol051267b
  28. Tang, L.; Choi, S.; Nandhakumar, R.; Park, H.; Chung, H.; Chin J.; Kim, K. M. J. Org. Chem. 2008, 73, 5996. https://doi.org/10.1021/jo800670t
  29. Chin, J.; Mancin, F.; Thavarajah, N.; Lee, D.; Lough, A.; Chung, D. S. J. Am. Chem. Soc. 2003, 125, 15276. https://doi.org/10.1021/ja0387554
  30. Gilli, G.; Bellucci, F.; Ferretti, V.; Bertolasi, V. J. Am. Chem. Soc. 1989, 111, 1023. https://doi.org/10.1021/ja00185a035
  31. Park, H.; Kim, K. M.; Lee, A.; Ham, S.; Nam, W.; Chin, J. J. Am. Chem. Soc. 2007, 129, 1518. https://doi.org/10.1021/ja067724g
  32. Nandhakumar, R.; Ryu, J.; Park, H.; Tang, L.; Choi, S.; Kim, K. M. Tetrahedron 2008, 64, 7704. https://doi.org/10.1016/j.tet.2008.06.029
  33. Tang, L.; Ga, H.; Kim, J.; Choi, S.; Nandhakumar, R.; Kim, K. M. Tetrahedron Lett. 2008, 49, 6914. https://doi.org/10.1016/j.tetlet.2008.09.117
  34. Park, H.; Hong, J.; Ham, S.; Nandhakumar, R.; Kim, K. M. Bull. Kor. Chem. Soc. 2009, 30, 409. https://doi.org/10.5012/bkcs.2009.30.2.409
  35. Park, H.; Nandhakumar, R.; Hong, J.; Ham, S.; Chin, J.; Kim, K. M. Chem. Eur. J. 2008, 14, 9935. https://doi.org/10.1002/chem.200801036
  36. Shaw, J. P.; Petsko, G. A.; Ringe, D. Biochemistry 1997, 36, 1329. https://doi.org/10.1021/bi961856c
  37. Walsh, C. T. J. Biol. Chem. 1989, 264, 23936.
  38. Gilli, P.; Bertolasi, V.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 2000, 122, 10405. https://doi.org/10.1021/ja000921+
  39. Kim, H.-J.; Kim, W.; Lough, A. J.; Kim, B. M.; Chin, J. J. Am. Chem. Soc. 2005, 127, 16776. https://doi.org/10.1021/ja0557785
  40. Nandhakumar, R.; Ahn, Y. S.; Hong, S.; Ham, S.; Kim, K. M. Tetrahedron 2009, 65, 666. https://doi.org/10.1016/j.tet.2008.11.022
  41. Takasaki, M.; Motoyama, Y.; Yoon, S-Ho.; Mochida, I.; Nagashima, H. J. Org. Chem. 2007, 72, 10291. https://doi.org/10.1021/jo702015j
  42. Au-Yeung, T. T.-L.; Chan, S.-S.; Chan, A. S. C. Adv. Synth. Catal. 2003, 345, 357 https://doi.org/10.1002/adsc.200390040
  43. Hofslokken, N. U.; Skattebol, L. Acta Chem. Scand. 1999, 53, 258. https://doi.org/10.3891/acta.chem.scand.53-0258
  44. Mazik, M.; Cavga, H. J. Org. Chem. 2007, 72, 831. https://doi.org/10.1021/jo061901e

Cited by

  1. Synthesis of a newly modified poly-H8-BINOL ligand and its applications in the asymmetric addition of triethylaluminium to aromatic aldehydes vol.33, pp.5, 2017, https://doi.org/10.1007/s40242-017-7093-y
  2. A Novel Dimeric BINOL for Enantioselective Recognition of 1,2-Amino Alcohols vol.32, pp.11, 2014, https://doi.org/10.1002/cjoc.201400321
  3. ChemInform Abstract: Synthesis of Novel H8-Binaphthol-Based Chiral Receptors and Their Applications in Enantioselective Recognition of 1,2-Amino Alcohols and Chirality Conversion of L-Amino vol.41, pp.39, 2010, https://doi.org/10.1002/chin.201039027