DOI QR코드

DOI QR Code

Asymmetric Michael Addition of Ketones to Nitroolefins Catalyzed by a New Chiral Catalyst

  • Wang, Lian-Jun (College of Chemistry and Chemical Engineering, Hunan Institute of Engineering) ;
  • Hu, Feng-Feng (College of Chemistry and Chemical Engineering, Hunan Institute of Engineering)
  • Received : 2010.02.11
  • Accepted : 2010.03.13
  • Published : 2010.05.20

Abstract

A new chiral catalyst was synthesized and found that it could catalyzed the asymmetric Michael reaction of ketones with nitroolefins smoothly at room temperature, giving the desired adducts in 71 - 92% yields with excellent diastereoselectivities and high enantioselectivities (up to 95% ee).

Keywords

References

  1. Berner, O. M.; Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 2002, 1877.
  2. Luchaco-Cullis, C. A.; Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 8192. https://doi.org/10.1021/ja020605q
  3. Duursma, A.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2003, 125, 3700. https://doi.org/10.1021/ja029817d
  4. Brandau, S.; Landa, A.; Franzen, J.; Marigo, M.; Jorgensen, K. A. Angew. Chem., Int. Ed. 2006, 45, 4305. https://doi.org/10.1002/anie.200601025
  5. Bartoli, G.; Bosco, M.; Carlone, A.; Cavalli, A.; Locatelli, M.; Mazzanti, A.; Ricci, P.; Sambri, L.; Melchiorre, P. Angew. Chem., Int. Ed. 2006, 45, 4966. https://doi.org/10.1002/anie.200600370
  6. Wang, Y.; Liu, X. F.; Deng, L. J. Am. Chem. Soc. 2006, 128, 1928.
  7. Huang, H. B.; Jacobsen, E. N. J. Am. Chem. Soc. 2006, 128, 7170. https://doi.org/10.1021/ja0620890
  8. Diner, P.; Nielsen, M.; Marigo, M.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2007, 46, 1983. https://doi.org/10.1002/anie.200604854
  9. Tang, B.; Zeng, X. F.; Lu, Y. P.; Chua, P. J.; Zhong, G. F. Org. Lett. 2009, 11, 1927. https://doi.org/10.1021/ol900330p
  10. Lo, C. M.; Chow, H. F. J. Org. Chem. 2009, 74, 5181. https://doi.org/10.1021/jo9006128
  11. Zeng, X. F.; Zhong, G. F. Synthesis 2009, 1545.
  12. Shah, J.; Khah, S. S.; Blumenthal, H.; Liebscher, J. Synthesis 2009, 3975.
  13. Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672. https://doi.org/10.1021/ja036972z
  14. Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X. N.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119. https://doi.org/10.1021/ja044370p
  15. Hayashi, Y.; Okino, T.; Takemoto, Y. Angew. Chem., Int. Ed. 2005, 44, 4032. https://doi.org/10.1002/anie.200500459
  16. Tsogoeva, S. B.; Wei, S. Chem. Commun. 2006, 1451.
  17. Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713. https://doi.org/10.1021/cr068373r
  18. Hoashi, Y.; Okino, T.; Takemoto, Y. Angew. Chem. Int. Ed. 2005, 44, 4032. https://doi.org/10.1002/anie.200500459
  19. Tsogoeva, S. B.; Wei, S. W. Chem. Commun. 2006, 1451.
  20. Okino, T.; Hoashi, Y.; Furukawa, T.; Wu, X. N.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119. https://doi.org/10.1021/ja044370p
  21. Cao, C. L.; Sun, X. L.; Zhou, J. L.; Tang, Y. J. Org. Chem. 2007, 72, 4073. https://doi.org/10.1021/jo070070p
  22. Cao, C. L.; Ye, M. C.; Sun, X. L.; Tang, Y. Org. Lett. 2006, 8, 2901. https://doi.org/10.1021/ol060481c
  23. Jiang, X. X.; Zhang, Y. F.; Chan, A. S. C.; Wang, R. Org. Lett. 2009, 11, 153. https://doi.org/10.1021/ol8025268
  24. Cao, Y. J.; Lu, H. H.; Lai, Y. Y.; Lu, L. Q.; Xiao, W. J. Synthesis 2006, 3795.
  25. Cheng, D. P.; Bao, W. L. Lett. Org. Chem. 2008, 5, 342. https://doi.org/10.2174/157017808784872151
  26. Mandal, T.; Zhao, C. G. Angew. Chem., Int. Ed. 2008, 47, 7714. https://doi.org/10.1002/anie.200803236
  27. Lu, A. D.; Gao, P.; Wu, Y.; Wang, Y. M.; Zhou, Z. H.; Tang, C. C. Org. Biomol. Chem. 2009, 7, 3141.
  28. Dahlin, N.; Boegevig, A.; Adolfsson, H. Adv. Synth. Catal. 2004, 346, 1101. https://doi.org/10.1002/adsc.200404098
  29. Kando, Y.; Uneme, H.; Minamida, I. Eur. Pat. Appl. 1991 EP 452782.
  30. Wakita, T.; Kinoshita, K.; Yasui, N.; Yamada, E.; Kawahara, N.; Kodaka, K. J. Pestic. Sci. 2004, 29, 348. https://doi.org/10.1584/jpestics.29.348
  31. Kumaran, G.; Kulkarni, G. H. Synthesis 1995, 1545.
  32. Wang, J.; Li, H.; Lou, B.; Zu, L. S.; Guo, H.; Wang, W. Chem. Eur. J. 2006, 12, 4321. https://doi.org/10.1002/chem.200600115
  33. Tan, B.; Zeng, X. F.; Lu, Y. P; Chua, P. J.; Zhong, G. F. Org. Lett. 2009, 11, 1927. https://doi.org/10.1021/ol900330p
  34. Cao, C. L.; Ye, M. C.; Sun, X. L.; Tang, Y. Org. Lett. 2006, 8, 2904.

Cited by

  1. Intramolecular hydrogen bonding guides a cationic amphiphilic organocatalyst to highly stereoselective aldol reactions in water vol.5, pp.77, 2015, https://doi.org/10.1039/C5RA12135C
  2. A Novel Proline-based Acridone Bifunctional Organocatalyst for the Asymmetric Michael Addition of Cyclohexanone vol.47, pp.4, 2018, https://doi.org/10.1246/cl.171220
  3. ChemInform Abstract: Asymmetric Michael Addition of Ketones to Nitroolefins Catalyzed by a New Chiral Catalyst. vol.41, pp.40, 2010, https://doi.org/10.1002/chin.201040027
  4. Hydrogen‐Bonding in Aminocatalysis: From Proline and Beyond vol.20, pp.2, 2010, https://doi.org/10.1002/chem.201303982
  5. Proline‐derived Long‐aliphatic‐chain Amphiphilic Organocatalysts (PDLACAOs) for Asymmetric Reactions in Aqueous Media vol.9, pp.11, 2010, https://doi.org/10.1002/ajoc.202000419