DOI QR코드

DOI QR Code

Preparation of Ag/PVP Nanocomposites as a Solid Precursor for Silver Nanocolloids Solution

  • Hong, Hyun-Ki (Deparment of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University) ;
  • Park, Chan-Kyo (Department of Applied Chemical Engineering, Dankook University) ;
  • Gong, Myoung-Seon (Deparment of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University)
  • Received : 2009.10.21
  • Accepted : 2010.03.08
  • Published : 2010.05.20

Abstract

A polyvinylpyrrolidone (PVP)/Ag nanocomposites was prepared by the simultaneous thermal reduction and radical polymerization route. The in situ synthesis of the Ag/PVP nanocomposites is based on the finding that the silver n-propylcarbamate (Ag-PCB) complex can be directly dissolved in the NVP monomer, and decomposed by only heat treatment in the range of 110 to $130^{\circ}C$ to form silver metal. Silver nanoparticles with a narrow size distribution (5 - 40 nm) were obtained, which were well dispersed in the PVP matrix. A successful synthesis of Ag/PVP nanocomposites then proceeded upon heat treatment as low as $110^{\circ}C$. Moreover, important advantages of the in situ synthesis of Ag/PVP composites include that no additives (e.g. solvent, surface-active agent, or reductant of metallic ions) are used, and that the stable silver nanocolloid solution can be directly prepared in high concentration simply by dissolving the Ag/PVP nanocomposites in water or organic solvent.

Keywords

References

  1. Volokitin, Y.; Sinzig, J.; de Jongh, L. J.; Schmid, G.; Vargaftik, M. N.; Moiseevi, I. I. Nature 1996, 384, 621. https://doi.org/10.1038/384621a0
  2. Flitton, R.; Johal, J.; Maeda, S.; Armes, S. P. J. Colloid Interface Sci. 1995, 173, 135. https://doi.org/10.1006/jcis.1995.1306
  3. Zhong, J.; Wen, W. Y.; Jones, A. A. Macromolecules 2003, 36, 6430. https://doi.org/10.1021/ma0302210
  4. Odegard, G. M.; Clancy, T. C.; Gates, T. S. Polymer 2005, 46, 553. https://doi.org/10.1016/j.polymer.2004.11.022
  5. Boev, V. I.; Pérez-Juste, J.; Pastoriza-Santos, I.; Silva, C. J. R.; de Jesus, M.; Gomes, M.; Liz-Marzán, L. M. Langmuir 2004, 20, 10268. https://doi.org/10.1021/la048902r
  6. Fudouzi, H.; Xia, Y. Langmuir 2003, 19, 9653. https://doi.org/10.1021/la034918q
  7. Lu, Y.; Liu, G. L.; Lee, L. P. Nano Lett. 2005, 5, 5. https://doi.org/10.1021/nl048965u
  8. Laine, R. M.; Choi, J.; Lee, I. Adv. Mater. 2001, 13, 800. https://doi.org/10.1002/1521-4095(200106)13:11<800::AID-ADMA800>3.0.CO;2-G
  9. Zhu, M. Q.; Wang, L. Q.; Exarhos, G. J.; Li, A. D. Q. J. Am. Chem. Soc. 2004, 126, 2656. https://doi.org/10.1021/ja038544z
  10. Zhang, Z.; Zhang, L.; Wang, S.; Chen, W.; Lei, Y. Polymer 2002, 42, 8315. https://doi.org/10.1016/S0032-3861(01)00285-3
  11. Wada, Y.; Kobayashi, T.; Yamasaki, H.; Sakata, T.; Hasegawa, N.; Mori, H.; Tsukahara, Y. Polymer 2007, 48, 1441. https://doi.org/10.1016/j.polymer.2007.01.047
  12. Huang, L. M.; Wen, T. C. Mater. Sci. Eng. A 2007, 445-446, 7. https://doi.org/10.1016/j.msea.2006.05.121
  13. Ghosh, K.; Maiti, S. N. J. Appl. Polym. Sci. 1996, 60, 323. https://doi.org/10.1002/(SICI)1097-4628(19960418)60:3<323::AID-APP5>3.0.CO;2-N
  14. Hatchett, D.W.; Josowicz, M.; Janata, J.; Baer, D. R. Chem. Mater. 1999, 11, 2989. https://doi.org/10.1021/cm990365m
  15. Huang, C. J.; Yen, C. C.; Chang, T. C. J. Appl. Polym. Sci. 1991, 42, 2237. https://doi.org/10.1002/app.1991.070420814
  16. Gotoh, Y.; Igarashi, R.; Ohkoshi, Y.; Nagura, M.; Akamatsu, K.; Deki. S. J. Mater. Chem. 2000, 11, 2548.
  17. Dearden, A. L.; Smith, P. J.; Shin, D. Y.; Reis, N.; Derby, B.; O’Brien1, P. Macromol. Rapid Commun. 2005, 26, 315. https://doi.org/10.1002/marc.200400445
  18. Alessio, R.; Dell’Amico, D. B.; Calderazzo, F.; Englert, U.; Guarini, A.; Labella, L.; Strasser, P. Helv. Chim. Acta 1998, 81, 219. https://doi.org/10.1002/hlca.19980810204
  19. Dell’Amico, D. B.; Calderazzo, F.; Labella, L.; Marchetti, F.; Pampaloni. G. Chem. Rev. 2003, 103, 3857. https://doi.org/10.1021/cr940266m
  20. Park, M. S.; Lim, T. H.; Jeon, Y. M.; Kim, J. G.; Joo, S. W.; Gong, M. S. Macromol. Res. 2008, 16, 308. https://doi.org/10.1007/BF03218522
  21. Park, M. S.; Lim, T. H.; Jeon, Y. M.; Kim, J. G.; Joo, S. W.; Gong, M. S. Sens. Actuators B 2008, 133, 166 https://doi.org/10.1016/j.snb.2008.02.008
  22. Park, M. S.; Lim, T. H.; Jeon, Y. M.; Kim, J. G.; Joo, S. W.; Gong, M. S. J. Colloid Interface Sci. 2008, 321, 60. https://doi.org/10.1016/j.jcis.2008.01.053
  23. Lim, T. H.; Jeon, Y. M.; Gong, M. S. Polymer(Korea) 2009, 33, 33.
  24. Jeon, Y. M.; Cho, H. N.; Gong, M. S. Macromol. Res. 2009, 17, 2. https://doi.org/10.1007/BF03218592
  25. Hong, H. K.; Gong, M. S.; Park, C. K. Bull. Korean Chem. Soc. 2009, 30, 2669. https://doi.org/10.5012/bkcs.2009.30.11.2669
  26. Park, H. S.; Park, H. S.; Gong, M. S. Polymer(Korea) 2010, 34, 144.
  27. Huang, H. H.; Ni, X. P.; Loy, G. L.; Chew, C. H.; Tan, K. L.; Loh, F. C.; Deng, J. F.; Xu, G. Q. Langmuir 1996, 12, 909. https://doi.org/10.1021/la950435d
  28. Carotenuto, G. Appl. Oarganometal. Chem. 2001, 15, 344. https://doi.org/10.1002/aoc.165
  29. Kapoor, S. Langmuir 1998, 14, 1021. https://doi.org/10.1021/la9705827
  30. Sarkar, A.; Kapoor, S.; Mukherjee, T. J. Phys. Chem. B 2005, 109, 7698. https://doi.org/10.1021/jp044201r
  31. Monti, O. L. A.; Fourkas, J. T.; Nesbitt, D. J. J. Phys. Chem. B 2004, 108, 1604. https://doi.org/10.1021/jp030492c

Cited by

  1. Positively Charged Silver Nanoparticles Threaded on Carbon Nanotube for the Efficient Delivery of Negatively Charged Biomolecules vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3581
  2. Facile Preparation of Nanosilver-decorated MWNTs Using Silver Carbamate Complex and Their Polymer Composites vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.483
  3. Novel polyvinylpyrrolidone nanocomposites with dispersed poly(amide-imide)/nano-ZrO2 as new nano-filler: morphology, thermal and optical properties vol.72, pp.10, 2015, https://doi.org/10.1007/s00289-015-1416-2
  4. Preparation and Characterization of Novel Hybrid Nanocomposites by Free Radical Copolymerization of Vinyl pyrrolidone with Incompletely Condensed Polyhedral Oligomeric Silsesquioxane vol.26, pp.3, 2016, https://doi.org/10.1007/s10904-016-0340-8
  5. -Methionine Diacid as a Filler on the Thermal and Morphological Properties of Poly(vinyl pyrrolidone) Composites pp.07306679, 2016, https://doi.org/10.1002/adv.21647
  6. Effects of silver nanoparticles on the thermal properties of polyethylene matrix nanocomposites vol.128, pp.2, 2017, https://doi.org/10.1007/s10973-016-6036-z
  7. Investigation on functionalization of cotton and viscose fabrics with AgNWs vol.24, pp.1, 2017, https://doi.org/10.1007/s10570-016-1107-7
  8. Ag Displacement on Cu Foam with Additives for Electrochemical Reduction of Carbon Dioxide to Carbon Monoxide vol.38, pp.9, 2017, https://doi.org/10.1002/bkcs.11225
  9. Platinum-Free Counter Electrode Using Polymer-Capped Graphene Nanoplatelets for Cobalt(II)/(III)-Mediated Porphyrin-Sensitized Solar Cells vol.5, pp.5, 2017, https://doi.org/10.1002/ente.201600495
  10. Green synthesis of micron-sized silver flakes and their application in conductive ink vol.53, pp.9, 2018, https://doi.org/10.1007/s10853-017-1962-0
  11. Synergetic effect of Ag/PVP on nonlinear optical characteristic of rGO transparent thin films vol.50, pp.7, 2018, https://doi.org/10.1007/s11082-018-1503-3
  12. Preparation of Silver Nanocolloids Using Silver Alkylcarbamate Complex in Organic Medium with PVP Stabilizer vol.31, pp.9, 2010, https://doi.org/10.5012/bkcs.2010.31.9.2575
  13. Preparation and Stabilization of Ag Nanoparticles in 1-Amino-4-methylpiperazine vol.32, pp.1, 2011, https://doi.org/10.5012/bkcs.2011.32.1.273
  14. Room temperature synthesis and optical studies on Ag and Au mixed nanocomposite polyvinylpyrrolidone polymer films vol.99, pp.None, 2012, https://doi.org/10.1016/j.saa.2012.08.066
  15. Preparation of Highly Stabilized Silver Nanopowders by the Thermal Reduction and Their Properties vol.33, pp.12, 2010, https://doi.org/10.5012/bkcs.2012.33.12.3987
  16. Facile Preparation of Silver Nanoparticles and Application to Silver Coating Using Latent Reductant from a Silver Carbamate Complex vol.34, pp.2, 2010, https://doi.org/10.5012/bkcs.2013.34.2.505
  17. Hollow SnO2-ZnO hybrid nanofibers as anode materials for lithium-ion battery vol.1, pp.2, 2010, https://doi.org/10.1088/2053-1591/1/2/025012
  18. Utilization of ultrasonic irradiation as a green and effective strategy to prepare poly(N-vinyl-2-pyrrolidone)/modified nano-copper (II) oxide nanocomposites vol.37, pp.None, 2010, https://doi.org/10.1016/j.ultsonch.2017.01.002
  19. Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria vol.10, pp.None, 2010, https://doi.org/10.3762/bjnano.10.167
  20. Surfactant-dependant thermally induced nonlinear optical properties of l-ascorbic acid-stabilized colloidal GNPs and GNP-PVP thin films vol.9, pp.27, 2010, https://doi.org/10.1039/c9ra01598a
  21. Structural evolution of Ag/BN hybrids via a polyol-assisted fabrication process and their catalytic activity in CO oxidation vol.9, pp.22, 2019, https://doi.org/10.1039/c9cy01464k