DOI QR코드

DOI QR Code

A Naked Eye Detection of Fluoride with Urea Receptors Which have both an Azo Group and a Nitrophenyl Group as a Signaling Group

  • Received : 2010.02.09
  • Accepted : 2010.03.03
  • Published : 2010.05.20

Abstract

Anion recognition via hydrogen-bonding interactions could be monitored with changes in UV-vis absorption spectra and in some cases easily monitored with naked eye. Urea receptors 1 and 2 connected with both an azo group and a nitrophenyl group as a signaling group for color change proved to be an efficient naked eye receptor for the fluoride ion. The anion recognition phenomena of the receptors 1 and 2 via hydrogen-bonding interactions were investigated through UV-vis absorption and $^1H$ NMR spectra.

Keywords

References

  1. Gale, P. A. Amide and Urea based receptors, Encyclopedia of Supramolecular Chemistry; Marcel Dekker: New York, 2004; p 31.
  2. Hayashita, T.; Onodera, T.; Kato, R.; Nishizawa, S.; Teramae, N. Chem. Commun. 2000, 755.
  3. Tozawa, T.; Misawa, Y.; Tokita, S.; Kubo, Y. Tetrahedron Lett. 2000, 41, 5219 https://doi.org/10.1016/S0040-4039(00)00819-4
  4. Kato, R.; Nishizawa, S.; Hayashita, T.; Teramae, N. Tetrahedron Lett. 2001, 42, 5053. https://doi.org/10.1016/S0040-4039(01)00916-9
  5. Gunnlaugsson, T.; Davis, A. P.; Glynn, M. Chem. Commun. 2001, 2556.
  6. Sasaki, S.; Citterio, D.; Ozawa, S.; Suzuki, K. J. Chem. Soc. Perkin Trans. 2 2001, 2309.
  7. Lee, D. H.; Lee, H. Y.; Lee, K. H.; Hong, J.-I. Chem. Commun. 2001, 1188.
  8. Hennrich, G.; Sonnenschein, H.; Resch-Genger, U. Tetrahedron Lett. 2001, 42, 2805. https://doi.org/10.1016/S0040-4039(01)00324-0
  9. Mei, M. H.; Wu, S. K. Acta Chim. Sin. 2001, 59, 1112.
  10. Jimenez, D.; Martinez-Manez, R.; Sancenon, F.; Soto, J. Tetrahedron Lett. 2002, 43, 2823. https://doi.org/10.1016/S0040-4039(02)00363-5
  11. Lee, D. H.; Lee, H. Y.; Hong, J.-I.; Tetrahedron Lett. 2002, 43, 7273. https://doi.org/10.1016/S0040-4039(02)01455-7
  12. Kondo, S.; Nagamine, M.; Yano, Y.; Tetrahedron Lett. 2003, 44, 8801. https://doi.org/10.1016/j.tetlet.2003.09.207
  13. Gunnlaugsson, T.; Kruger, P. E.; Lee, T. C.; Parkesh, R.; Pfeffer, F. M.; Hussey, G. M. Tetrahedron Lett. 2003, 44, 6575. https://doi.org/10.1016/S0040-4039(03)01699-X
  14. Sansone, F.; Chierici, E.; Casnati, A.; Ungaro, R. Org. Biomol. Chem. 2003, 1, 1802. https://doi.org/10.1039/b301595e
  15. Gunnlaugsson, T.; Davis, A. P.; Hussey, G. M.; Tierney, J.; Glynn, M. Org. Biomol. Chem. 2004, 2, 1856. https://doi.org/10.1039/b404706k
  16. Lee, J. Y.; Cho, E. J.; Mukamel, S.; Nam, K. C. J. Org. Chem. 2004, 69, 943. https://doi.org/10.1021/jo0356457
  17. Cho, E. J.; Moon, J. W.; Ko, S. W.; Lee, J. Y.; Kim, S. K.; Yoon, J.; Nam, K. C. J. Am. Chem. Soc. 2003, 125, 12376. https://doi.org/10.1021/ja036248g
  18. Kim, S. K.; Singh, N. J.; Kim, S. J.; Swamy, K. M. K.; Kim, S. H.; Lee, K. -H.; Kim, K. S.; Yoon, J. Tetrahedron 2005, 61, 4545. https://doi.org/10.1016/j.tet.2005.03.009
  19. Hose, D. A.; Kumar, D. K.; Ganguly, B.; Das, A. Org. Lett. 2004, 6, 3445. https://doi.org/10.1021/ol048829w
  20. Martinez-Manez, R.; Sancenon, F. Chem. Rev. 2003, 103, 4419. https://doi.org/10.1021/cr010421e
  21. Suksai, C.; Tuntulani, T. Chem. Soc. Rev. 2003, 32, 192. https://doi.org/10.1039/b209598j
  22. Kang, S. O.; Linares, J. M.; Powell, D.; VanderVelde, D.; Bowman- James, K. J. Am Chem. Soc. 2003, 125, 10152. https://doi.org/10.1021/ja034969+
  23. Kondo, S.-i.; Hiraoka, Y.; Kurumatani, N.; Yano, Y. Chem. Commun. 2005, 1720.
  24. Xie, H.; Yi, S.; Wu, S. J. Chem. Soc., Perkin Trans. 2 1999, 2751.
  25. Kim, H.; Kang, J. Bull. Korean. Chem. Soc. 2007, 28(9), 1531. https://doi.org/10.5012/bkcs.2007.28.9.1531
  26. Perez-Casas, C.; Yatsimirsky, A. K. J. Org. Chem. 2008, 73, 2275. https://doi.org/10.1021/jo702458f
  27. Amendola, V.; Esteban-Gomez, D.; Fabbrizzi, L.; Licchelli, M. Acc. Chem. Res. 2006, 39, 343. https://doi.org/10.1021/ar050195l
  28. Benesi, H.; Hildebrand, H. J. Am. Chem. Soc. 1949, 71, 2703. https://doi.org/10.1021/ja01176a030
  29. Hynes, M. J. J. Chem. Soc., Dalton Trans. 1993, 311.

Cited by

  1. Theoretical study on a chemosensor for fluoride anion-based on a urea derivative vol.114, pp.2, 2014, https://doi.org/10.1002/qua.24527
  2. Chromogenic anion receptors based on 4-nitrophenylhydrazone and phenylhydrazone vol.79, pp.1-2, 2014, https://doi.org/10.1007/s10847-013-0328-8
  3. ChemInform Abstract: A Naked Eye Detection of Fluoride with Urea Receptors which Have Both an Azo Group and a Nitrophenyl Group as a Signaling Group. vol.41, pp.40, 2010, https://doi.org/10.1002/chin.201040214
  4. Phosphorescent Dimesitylboryl-Appended Iridium(III) Complex for Fluoride Anion Sensing vol.32, pp.11, 2010, https://doi.org/10.5012/bkcs.2011.32.11.4125
  5. A New Chromogenic Water Sensing System Utilizing Deprotonation and Protonation of Anion Receptor vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4244
  6. Efficient synthesis and anion recognition of a colorimetric preorganized tripodal thiourea compound vol.53, pp.17, 2012, https://doi.org/10.1016/j.tetlet.2012.02.069
  7. Conformation and Visual Distinction between Urea and Thiourea Derivatives by an Acetate Ion and a Hexafluorosilicate Cocrystal of the Urea Derivative in the Detection of Water in Dimethylsulfoxide vol.2, pp.10, 2017, https://doi.org/10.1021/acsomega.7b01217