DOI QR코드

DOI QR Code

Michael-type Reactions of 1-(X-substituted phenyl)-2-propyn-1-ones with Alicyclic Secondary Amines in MeCN and H2O: Effect of Medium on Reactivity and Transition-State Structure

  • Kim, Song-I (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Hwang, So-Jeong (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Park, Yoon-Min (Evertech Enterprise Co. Ltd.) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2010.02.25
  • Accepted : 2010.03.03
  • Published : 2010.05.20

Abstract

Second-order rate constants ($k_N$) have been measured spectrophotometrically for Michael-type reactions of 1-(X-substituted phenyl)-2-propyn-1-ones (2a-f) with a series of alicyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The $k_N$ value increases as the incoming amine becomes more basic and the substituent X changes form an electron-donating group (EDG) to an electron-withdrawing group (EWG). The Br${\o}$nsted-type plots are linear with ${\beta}_{nuc}$ = 0.48 - 0.51. The Hammett plots for the reactions of 2a-f exhibit poor correlations but the corresponding Yukawa-Tsuno plots result in much better linear correlations with ${\rho}$ = 1.57 and r = 0.46 for the reactions with piperidine while ${\rho}$ = 1.72 and r = 0.39 for those with morpholine. The amines employed in this study are less reactive in MeCN than in water for reactions with substrates possessing an EDG, although they are ca. 8 pKa units more basic in the aprotic solvent. This indicates that the transition state (TS) is significantly more destabilized than the ground state (GS) in the aprotic solvent. It has been concluded that the reactions proceed through a stepwise mechanism with a partially charged TS, since such TS would be destabilized in the aprotic solvent due to the electronic repulsion between the negative-dipole end of MeCN and the negative charge of the TS. The fact that primary deuterium kinetic effect is absent supports a stepwise mechanism in which proton transfer occurs after the rate-determining step.

Keywords

References

  1. Micheal, B. S.; Jerry. M. March's Advanced Organic Chemistry; Wiley Press: Toronto, 2001; p 976.
  2. Felix, A. C. Structure and Mechanism in Organic Chemistry; Pacific Grove: Los Angeles, 1998; p 629.
  3. Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis; Pergamon: Oxford, 1992
  4. Oare, D. A.; Heathcock, C. H. Top. Stereochem. 1989, 19, 227-407. https://doi.org/10.1002/9780470147283.ch5
  5. Bernasconi, C. F. Acc. Chem. Res. 1987, 20, 301-308. https://doi.org/10.1021/ar00140a006
  6. Bernasconi, C. F. Ads. Phys. Org. Chem. 1992, 27, 119-238.
  7. Bernasconi, C. F.; Leyes, A.; Eventova, I.; Rappoport, Z. J. Am. Chem. Soc. 1995, 117, 1703-1711. https://doi.org/10.1021/ja00111a006
  8. Bernasconi, C. F.; Stronach, M. J. Org. Chem. 1991, 56, 1993-2001. https://doi.org/10.1021/jo00006a008
  9. Bernasconi, C. F.; Murray, C. J. J. Am. Chem. Soc. 1986, 108, 5251-5257. https://doi.org/10.1021/ja00277a032
  10. Oh, H. K. Bull. Korean Chem. Soc. 2009, 30, 1887-1890. https://doi.org/10.5012/bkcs.2009.30.8.1887
  11. Oh, H. K. Bull. Korean Chem. Soc. 2008, 29, 1195-1198. https://doi.org/10.5012/bkcs.2008.29.6.1195
  12. Sung, D. D.; Kang, S. S.; Lee, J. P.; Jung, D. I.; Ryu, Z. H.; Lee, I. Bull. Korean Chem. Soc. 2007, 28, 1670-1674. https://doi.org/10.5012/bkcs.2007.28.10.1670
  13. Oh, H. K.; Lee, J. M.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 3089-3093. https://doi.org/10.1021/jo047832q
  14. Oh, H. K.; Kim, I. K.; Sung, D. D.; Lee, I. Org. Biomol. Chem. 2004, 2, 1213-1216. https://doi.org/10.1039/b401239a
  15. Oh, H. K.; Kim, I. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2004, 69, 3806-3810. https://doi.org/10.1021/jo034370s
  16. Gross, Z.; Hoz, S. J. Am. Chem. Soc. 1988, 110, 7489-7493.
  17. Truce, W. E.; Onken, D. W. J. Org. Chem. 1975, 40, 3200-3208. https://doi.org/10.1021/jo00910a008
  18. Truce, W. E.; Heuring, D. L.; Wolf, G. C. J. Org. Chem. 1974, 39, 238-244. https://doi.org/10.1021/jo00916a027
  19. Truce, W. E.; Tichenor, G. J. J. Org. Chem. 1972, 37, 2391-2396. https://doi.org/10.1021/jo00980a007
  20. Sun, X.; Sengupta, S.; Petersen, J. L.; Wang, H.; Lewis, J. P.; Shi, X. Org. Lett. 2007, 9, 4495-4498. https://doi.org/10.1021/ol702059x
  21. Sopbue Fondjo, E.; Doepp, D.; Henkel, G. Tetrahedron 2006, 62, 7121-7131. https://doi.org/10.1016/j.tet.2006.04.037
  22. Crisp, G. T.; Millan, M. J. Tetrahedron 1998, 4, 637-648.
  23. Crisp, G. T.; Millan, M. J. Tetrahedron 1998, 4, 637-648.
  24. Shen, Z.; Lu, X. Tetrahedron 2006, 62, 10896-10899. https://doi.org/10.1016/j.tet.2006.08.086
  25. Zhao, L.; Lu, X.; Xu, W. J. Org. Chem. 2005, 70, 4059-4063. https://doi.org/10.1021/jo050121n
  26. Xu, Z.; Lu, X. J. Org. Chem. 1998, 63, 5031-5041. https://doi.org/10.1021/jo9723063
  27. Ma, S.; Lu, X.; Li, Z. J. Org. Chem. 1992, 57, 709-713. https://doi.org/10.1021/jo00028a055
  28. Ma, S.; Lu, X. J. Chem. Soc., Chem. Commun. 1990, 1643-1644.
  29. Um, I. H.; Lee, J. S.; Yuk, S. M. J. Org. Chem. 1998, 63, 9152-9153. https://doi.org/10.1021/jo9816459
  30. Um, I. H.; Lee, E. J.; Seok, J. A.; Kim, K. H. J. Org. Chem. 2005, 70, 7530-7536. https://doi.org/10.1021/jo050624t
  31. Kim, S. I.; Baek, H. W.; Um, I. H. Bull. Korean Chem. Soc. 2009, 30, 2909-2912. https://doi.org/10.5012/bkcs.2009.30.12.2909
  32. Hwang, S. J.; Park, Y. M.; Um, I. H. Bull. Korean Chem. Soc. 2008, 29, 1911-1914. https://doi.org/10.5012/bkcs.2008.29.10.1911
  33. Spillane, W. J.; McGrath, P.; Brack, C.; O’Byme, A. B. J. Org. Chem. 2001, 66, 6313-6316. https://doi.org/10.1021/jo015691b
  34. Mc-Caw, C. J. A.; Spillane, W. J. J. Phys. Org. Chem. 2006, 18, 512-517.
  35. Bell, R. P. The proton in Chemistry; Methuen: London, 1959; p 159.
  36. Chapman, N. B.; Shorter, J. Advances in Linear Free Energy Relationships; Phenum : London, 1972.
  37. Lewis, E. S. Techniques of Organic Chemistry, 3rd ed.; Willey: New York, 1974.
  38. Bernasconi, C. F. Techniques of Organic Chemistry, 4th ed.; Willey:New York, 1986.
  39. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720. https://doi.org/10.1021/jo061308x
  40. Um, I. H.; Park, J. E.; Shin, Y. H. Org. Biomol. Chem. 2007, 5, 3539-3543. https://doi.org/10.1039/b712427a
  41. Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2006, 71, 2302-2306. https://doi.org/10.1021/jo052417z
  42. Castro, E. A.; Gazitua, M.; Santos, J. J. Org. Chem. 2005, 70, 8088-8092. https://doi.org/10.1021/jo051168b
  43. Castro, E. A.; Aliaga, M.; Santos, J. J. Org. Chem. 2005, 70, 2679-2685. https://doi.org/10.1021/jo047742l
  44. Castro, E. A.; Aguayo, R.; Bessolo, J. J. Org. Chem. 2005, 70, 7788-7791. https://doi.org/10.1021/jo051052f
  45. Castro, E. A.; Aguayo, R.; Bessolo, J. J. Org. Chem. 2005, 70, 3530-3536. https://doi.org/10.1021/jo050119w
  46. Stefanidis, D.; Cho, S.; Dhe-Paganon, S.; Jencks, W. P. J. Am. Chem. Soc. 1993, 115, 1650-1656. https://doi.org/10.1021/ja00058a006
  47. Castro, E. A.; Cubillos, M.; Aliaga, M.; Evangelisti, S.; Santos, J. G. J. Org. Chem. 2004, 69, 2411-2416. https://doi.org/10.1021/jo035451r
  48. Castro, E. A.; Garcia, P.; Leandro, L.; Quesieh, N.; Rebolledo, A.; Santos, J. G. J. Org. Chem. 2000, 65, 9047-9053. https://doi.org/10.1021/jo005587e
  49. Castro, E. A.; Santos, J. G.; Tellez, J.; Umana, M. I. J. Org. Chem. 1997, 62, 6568-6574. https://doi.org/10.1021/jo970624w
  50. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 8995-8998. https://doi.org/10.1021/jo0264269
  51. Lee, H. W.; Guha, A. K.; Lee, I. Int. J. Chem. Kinet. 2002, 34, 632-637. https://doi.org/10.1002/kin.10081
  52. Lee, I.; Hong, S. W.; Koh, H. J.; Lee, B.C.; Lee, H. W. J. Org. Chem. 2001, 66, 8549-8555. https://doi.org/10.1021/jo0108212
  53. Lee, I.; Kim, C. K.; Li, H. G.; Sohn, C. K.; Kim, C. K.; Lee, H. W.; Lee, B. S. J. Am. Chem. Soc. 2000, 122, 11162-11172. https://doi.org/10.1021/ja001814i
  54. Oh, H. K.; Lee, J. Y.; Lee, H. W.; Lee, I. New J. Chem. 2002, 26, 473-476. https://doi.org/10.1039/b107403m
  55. Um, I. H.; Han, H. J.; Baek, M. H.; Bae, S. Y. J. Org. Chem. 2004, 69, 6365-6370. https://doi.org/10.1021/jo0492160
  56. Um, I. H.; Hong, J. Y.; Kim, J. J.; Chae, O. M.; Bae, S. K. J. Org. Chem. 2003, 68, 5180-5185. https://doi.org/10.1021/jo034190i
  57. Oh, H. K.; Kim, I. K.; Sung, D. D.; Lee, I. Bull. Korean Chem. Soc. 2005, 26, 641-644. https://doi.org/10.1007/s11814-009-0107-9
  58. Um, I. H.; Hwang, S. J.; Lee, E. J. Bull. Korean Chem. Soc. 2008, 29, 767-771. https://doi.org/10.5012/bkcs.2008.29.4.767
  59. Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942. https://doi.org/10.1021/jo049694a
  60. Um, I. H.; Chun, S. M.; Chea, O. M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172. https://doi.org/10.1021/jo049812u
  61. Um, I. H.; Han, H. J.; Ahn, J. A.; Kang S.; Buncel, E. J. Org. Chem. 2002, 67, 8475-8480. https://doi.org/10.1021/jo026339g
  62. Um, I. H.; Lee, J. Y.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2004, 69, 4236-2441.
  63. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720. https://doi.org/10.1021/jo061308x
  64. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829. https://doi.org/10.1021/jo070171n
  65. Um, I. H.; Han, J. Y.; Hwang, S. J. Chem. Eur. J. 2008, 14, 7324-7330. https://doi.org/10.1002/chem.200800553
  66. Um, I. H.; Park, J. E.; Shin, Y. H. Org. Biomol. Chem. 2007, 5, 3539-3543. https://doi.org/10.1039/b712427a
  67. Than, S.; Fujio, M.; Kikukawa, K.; Mishima, M. Int. J. Mass Spec. 2007, 263, 205-214.
  68. Maeda, H.; Irie, M.; Than, S.; Kikukawa, K.; Mishima, M. Bull. Chem. Soc. Jpn. 2007, 80, 195-203. https://doi.org/10.1246/bcsj.80.195
  69. Mishima, M.; Maeda, H.; Than, S.; Irie, M.; Kikukawa, K. J. Phys. Org. Chem. 2006, 19, 616-623. https://doi.org/10.1002/poc.1104
  70. Fujio, M.; Alam, M. A.; Umezaki, Y.; Kikukawa, K.; Fujiyama, R.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2007, 80, 2378-2383. https://doi.org/10.1246/bcsj.80.2378
  71. Fujio, M.; Umezaki, Y.; Alam, M. A.; Kikukawa, K.; Fujiyama, R.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2006, 79, 1091-1099. https://doi.org/10.1246/bcsj.79.1091
  72. Miroslav, L.; Vaclav, B.; Karel, K.; Oldrich, P.; Miroslav, V. Coll. Czech. Chem. Commun. 1986, 51, 2135-2142. https://doi.org/10.1135/cccc19862135
  73. Kolthoff, I. M.; Chantooni, M. K., Jr. J. Am. Chem. Soc. 1970, 92, 7025-7030. https://doi.org/10.1021/ja00727a003
  74. Parker, A. J. Chem. Rev. 1969, 69, 1-32. https://doi.org/10.1021/cr60257a001
  75. Ritchie, C. D.; Coetzee, J. F. In Solvent-Solute Interactions; Marcel Dekker: New York, 1969.
  76. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry; VCH: Weinheim, 1988.
  77. Buncel, E.; Wilson, H. Adv. Phys. Org. Chem. 1977, 14, 133-202. https://doi.org/10.1016/S0065-3160(08)60109-4
  78. Goitein, R.; Bruice, T. C. J. Phys. Chem. 1972, 76, 432-434. https://doi.org/10.1021/j100647a024
  79. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 2nd ed.; Harper and Row: New York, 1981.
  80. Browden, K.; Heilborn, I. M.; Jones, E. R. H.; Weedon, B. C. L. J. Chem. Soc. 1946, 39-45. https://doi.org/10.1039/jr9460000039
  81. Bagley, M. c.; Dale, J. W.; Ohnesorge, M.; Xiong, X.; Bower, J. J. Comb. Chem. 2003, 5, 41-44. https://doi.org/10.1021/cc020067d
  82. McMullen, C. H.; Stirling, C. J. M. J. Chem. Soc. 1966, 1211-1223. https://doi.org/10.1039/j19660001211
  83. Jones, E. R. H.; Stirling, C. J. M. J. Chem. Soc. 1942, 733-735. https://doi.org/10.1039/jr9420000733
  84. Hennion, G. F.; Murray, W. S. J. Am. Chem. Soc. 1942, 64, 1220-1222. https://doi.org/10.1021/ja01257a059
  85. Froning, J. F.; Hennion, G. F. J. Am. Chem. Soc. 1940, 62, 653-655. https://doi.org/10.1021/ja01860a065

Cited by

  1. Effects of substituents on activation parameter changes in the Michael-type reactions of nucleophilic addition to activated alkenes and alkynes in solution vol.147, pp.2, 2016, https://doi.org/10.1007/s00706-015-1622-5
  2. A Kinetic Study on Nucleophilic Displacement Reactions of Phenyl Y-Substituted-Phenyl Carbonates with Alkali Metal Ethoxides: Metal Ion Effect and Reaction Mechanism vol.85, pp.9, 2012, https://doi.org/10.1246/bcsj.20120104
  3. Click Nucleophilic Conjugate Additions to Activated Alkynes: Exploring Thiol-yne, Amino-yne, and Hydroxyl-yne Reactions from (Bio)Organic to Polymer Chemistry vol.121, pp.12, 2010, https://doi.org/10.1021/acs.chemrev.0c01076