References
- Caravan, P. Chem. Soc. Rev. 2006, 35, 512. https://doi.org/10.1039/b510982p
- Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Chem. Rev. 1999, 99, 2293. https://doi.org/10.1021/cr980440x
- Aime, S.; Botta, M.; Fasano, M.; Terrono, E. Chem. Soc. Rev. 1998, 27, 19. https://doi.org/10.1039/a827019z
- Hermann, P.; Kotek, J.; Kubicek, V.; Lukes, I. Dalton Trans. 2008, 3027.
- Merbach, A. E.; Toth, E. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging; John Wiley & Sons, Ltd: Chichester, UK, 2001.
- Crch, S. G.; Bussolati, B.; Tei, L.; Grange, C.; Esposito, G.; Lanzardo, E.; Camussi, G.; Aime, S. Cancer Res. 2006, 66, 9196. https://doi.org/10.1158/0008-5472.CAN-06-1728
- Sitharaman, B. Kissell, K. R.; Hartman, K. B.; Tran, L. A.; Baikalov, A.; Rusakova, I.; Sun, Y.; Khant, H. A.; Ludtke, S. J.; Chiu, W.; Laus, S.; Toth, E.; Helm, L.; Merbach, E.; Wilson, L. J. Chem. Commun. 2005, 3915.
- Aime, S.; Botta, M.; Fasano, M.; Genimatti Crich, S.; Terreno, E. Coord. Chem. Rev. 1999, 321, 185.
- Aime, S.; Frullano, L.; Crish, S. G. Angew. Chem. Int. Ed. 2002, 41, 1017. https://doi.org/10.1002/1521-3773(20020315)41:6<1017::AID-ANIE1017>3.0.CO;2-P
- Reynolds, C. H.; Annan, N.; Beshah, K.; Huberm, J. H.; Shaber, S. H.; Lenkinski, R. E.; Wortman, J. A. J. Am. Chem. Soc. 2000, 122, 8940. https://doi.org/10.1021/ja001426g
- Aime, S.; Cabella, C.; Colombatto, S.; Crich, S. G.; Gianolio, E.; Maggioni, F. J. Magn. Res. Imaging. 2002, 16, 394. https://doi.org/10.1002/jmri.10180
- Sanchez, P.; Valero, E.; Galvez, N.; Domminguez-Vera, J. M.; Marinone, M.; Poletti, G.; Corti, M.; Lascialfari, A. Dalton Trans. 2009, 800.
- Kircher, M. F.; Mahmood, U.; King, R. S.; Weissleder, R.; Josephson, L. Cancer Res. 2003, 63, 8122.
- Devaraj, N. K.; Keliher, E. J.; Thurber, G. M.; Nahrendorf, M.; Weissleder, R. Bionconjugate Chem. 2009, 20, 397. https://doi.org/10.1021/bc8004649
- Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T. ; Song, I. C.; Moon, W. K.; Hyeon, T. Angew. Chem. 2008, 47, 1. https://doi.org/10.1002/anie.200790254
- Hu, K. W.; Jhang, F. Y.; Su, C. H.; Yeh, C. S. J. Mat. Chem. 2009, 19, 2147. https://doi.org/10.1039/b815087g
- Lim, Y. T.; Cho, M. Y.; Choi, B. S.; Lee, J. M.; Chung, B. H. Chem. Commun. 2008, 4930.
- Fenchel, S.; Fleiter, T. R., Aschoffm A. J.; Gessel, R. V.; Brambs, H. J.; Merkle, E. M. Br. J. Radiol. 2004, 77, 821. https://doi.org/10.1259/bjr/19527646
- Enicina, J. L.; Bonmati, L. M.; R-Oms, C. L.; Rodriguez, V. Eur. Radiol. 1997, 7, S115. https://doi.org/10.1007/PL00006875
- Hainfeld, J. F.; Slatkin, D. N.; Focella, T. M.; Smilowitz, H. M.; Br. J. Radiol. 2006, 79, 248. https://doi.org/10.1259/bjr/13169882
- Kattumuri, V.; Katti, K.; Bhaskaran, S.; Boote, E. J.; Casteel, S. W.; Fent, G. M; Robertson, D. J.; Chandrasekhar, M.; Kannanm R.; Katti, K. V. Small 2007, 3, 333. https://doi.org/10.1002/smll.200600427
- Cai, Q. U.; Kim, S. H., Choi, K. S.; Kim, S. Y., Byun, S. J.; Kim, K. W.; Park, S. H.; Juhng, S. K.; Yoon, K. H. Invest Radiol. 2007, 42, 797. https://doi.org/10.1097/RLI.0b013e31811ecdcd
- Debouttiere, P. J.; Roux, S.; Vocanson, F.; Bilotey, C.; Beuf, O.; Favre-Reguillon, A.; Lin, Y.; Pellet-Rostaing, S.; Lamartine, R.; Perriat, P.; Tillement, O. Adv. Funct. Mater. 2006, 16, 2330. https://doi.org/10.1002/adfm.200600242
- Alric, C.; Taleb, J.; Duc, G. L.; Mandon, C.; Bilotey, C.; Meur-Herland, A. L.; Brochard, T.; Vocanson, F.; Janier, M.; Perriat, P.; Roux, S.; Tillement, O. J. Am. Chem. Soc. 2008, 130, 5908. https://doi.org/10.1021/ja078176p
- Dutta, S.; Kim, S. K.; Patel, D. B.; Kim, T. J.; Chang, Y. M. Polyhedron 2007, 26, 3799. https://doi.org/10.1016/j.poly.2007.04.027
- Dutta, S.; Park, J. A.; Jung, J. C.; Chang, Y. M.; Kim, T. J. Dalton Trans. 2008, 16, 2199.
- Park, J. A.; Lee, J. J.; Jung, J. C.; Yu, D. Y.; Oh, C.; Ha, S.; Kim, T. J.; Chang, Y. M.; ChemBioChem. 2008, 9, 2811. https://doi.org/10.1002/cbic.200800529
- Park, J. A.; Reddy, P. A. N.; Kim, H. K.; Kim, I. S.; Kim, G. C.; Chang, Y.; Kim, T. J. Bioorg. Med. Chem. Lett. 2008, 18, 6135. https://doi.org/10.1016/j.bmcl.2008.10.017
- Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Anal. Chem. 1995, 67, 735. https://doi.org/10.1021/ac00100a008
- Joing Committee of powder diffraction Standard (JCPDS) Card No. 04-0784, 2002.
- Yonezawa, T.; Kunitake, T. Coll. Surf. A 1999, 149, 193. https://doi.org/10.1016/S0927-7757(98)00309-4
- Daniel, M. C.; Astruc, D. Chem, Rev. 2004, 104, 293. https://doi.org/10.1021/cr030698+
- Kim. J. S.; Rieter, W. J.; Taylor, K. M. L.; An, H.; Lin, W. J. Am. Chem. Soc. 2007, 129, 8962. https://doi.org/10.1021/ja073062z
- Riester, W. J.; Kim, J. S.; Taylor, K. M. L.; An, H.; Lin, W; Tarrant, T. Angew. Chem. Int. Ed. 2007, 46, 3680. https://doi.org/10.1002/anie.200604738
- Alric, C.; Taleb, J.; Duc, G. L.; Mandon, C.; Bilotey, C.; Meur-Herland, A. L.; Brochard, T.; Vocanson, F.; Janier, M.; Perriat, P.; Roux, S.; Tilement, O. J. Am. Chem. Soc. 2008, 130, 5908. https://doi.org/10.1021/ja078176p
Cited by
- Strategies for increasing relaxivity of gold nanoparticle based MRI contrast agents vol.13, pp.20, 2011, https://doi.org/10.1039/c0cp02508a
- Gold Nanoparticles: Promising Nanomaterials for the Diagnosis of Cancer and HIV/AIDS vol.2011, pp.1687-4129, 2011, https://doi.org/10.1155/2011/202187
- Inorganic Nanoparticles Based Contrast Agents for X-ray Computed Tomography vol.1, pp.4, 2012, https://doi.org/10.1002/adhm.201200032
- X-ray-Computed Tomography Contrast Agents vol.113, pp.3, 2013, https://doi.org/10.1021/cr200358s
- Lanthanide-Functionalized Nanoparticles as MRI and Luminescent Probes for Sensing and/or Imaging Applications vol.53, pp.4, 2014, https://doi.org/10.1021/ic4023568
- /Au Nanocomposite Particles for Targeted Dual Mode CT/MR Imaging of Tumors vol.11, pp.35, 2015, https://doi.org/10.1002/smll.201500856
- Schiff Base Ligand Coated Gold Nanoparticles for the Chemical Sensing of Fe(III) Ions vol.2015, pp.1687-4129, 2015, https://doi.org/10.1155/2015/101694
- Targeted CT imaging of human hepatocellular carcinoma using low-generation dendrimer-entrapped gold nanoparticles modified with lactobionic acid vol.3, pp.2, 2015, https://doi.org/10.1039/C4TB01542H
- Poly(acrylic acid) Bridged Gadolinium Metal–Organic Framework–Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging vol.7, pp.32, 2015, https://doi.org/10.1021/acsami.5b03998
- An anisotropic propagation technique for synthesizing hyperbranched polyvillic gold nanoparticles vol.9, pp.10, 2016, https://doi.org/10.1007/s12274-016-1174-y
- Tc-labeled multifunctional dendrimer-entrapped gold nanoparticles vol.5, pp.21, 2017, https://doi.org/10.1039/C7TB00543A
- High magnetic relaxivity in a fluorescent CdSe/CdS/ZnS quantum dot functionalized with MRI contrast molecules vol.53, pp.76, 2017, https://doi.org/10.1039/C7CC05537D
- Gold Nanoparticles Coated with Manganese–Porphyrin That Effectively Shorten the Longitudinal Relaxation Time of Water Molecules Depending on the Particle Size vol.43, pp.12, 2014, https://doi.org/10.1246/cl.140812
- An albumin-based gold nanocomposites as potential dual mode CT/MRI contrast agent vol.20, pp.2, 2018, https://doi.org/10.1007/s11051-018-4145-2
- Gold nanoparticles as computerized tomography (CT) contrast agents vol.2, pp.33, 2012, https://doi.org/10.1039/c2ra21263c
- Multifunctional dendrimer-based nanoparticles for in vivo MR/CT dual-modal molecular imaging of breast cancer vol.8, pp.None, 2010, https://doi.org/10.2147/ijn.s46177
- Gadolinium(III) based nanoparticles for T1-weighted magnetic resonance imaging probes vol.6, pp.65, 2010, https://doi.org/10.1039/c6ra07782j
- Recent advances in the development of nanoparticles for multimodality imaging and therapy of cancer vol.40, pp.3, 2010, https://doi.org/10.1002/med.21642
- Gadolinium-Labeled Ferritin Nanoparticles as T1 Contrast Agents for Magnetic Resonance Imaging of Tumors vol.3, pp.9, 2020, https://doi.org/10.1021/acsanm.0c01563
- Biogenic Synthesis of Gold Nanoparticles on a Green Support as a Reusable Catalyst for the Hydrogenation of Nitroarene and Quinoline vol.16, pp.14, 2010, https://doi.org/10.1002/asia.202100385
- Functionalized nanoporous gold membrane for pancreatic islet cells encapsulation vol.301, pp.None, 2010, https://doi.org/10.1016/j.matlet.2021.130224