DOI QR코드

DOI QR Code

Gold Nanoparticles Coated with Gd-Chelate as a Potential CT/MRI Bimodal Contrast Agent

  • Sk Md., Nasiruzzaman (Department of Applied Chemistry, Kyungpook National University) ;
  • Kim, Hee-Kyung (Department of Medical & Biological Engineering, Kyungpook National University) ;
  • Park, Ji-Ae (Laboratory of Nuclear Medicine Research Molecular Imaging Center, Korea Institute of Radiological Medical Science) ;
  • Chang, Yong-Min (Department of Medical & Biological Engineering, Kyungpook National University) ;
  • Kim, Tae-Jeong (Department of Applied Chemistry, Kyungpook National University)
  • Received : 2009.09.08
  • Accepted : 2010.02.26
  • Published : 2010.05.20

Abstract

The synthesis and characterization of gold nanoparticles coated by Gd-chelate (GdL@Au) is described, where L is a conjugate of DTPA (DTPA = diethylenetriamine-N,N,N',N",N"-pentaacetic acid) and 4-aminothiophenol. These particles are obtained by the replacement of citrate from the gold nanoparticle surfaces with gadolinium chelate (GdL). The average size of GdL@Au is 12 nm with a loading of GdL reaching up to $1.4{\times}10^3$ per particles, and they demonstrate very high r1 relaxivity (${\sim}10^4mM^{-1}s^{-1}$) and the r1 relaxivity per [Gd] is as high as $10mM^{-1}s{-1}$. Here, we also describe the use of bimodality of this contrast agent (CA) as a highly efficient CT contrast agent based on gold nanoparticles (GNPs) that overcome the limitations of iodine based contrast agent. The MTT assay performed on this CAs reveals the cytotoxicity as low as that for Omniscan$^{(R)}$ in the concentration range required to obtain intensity enhancement in the in vivo MRI study.

Keywords

References

  1. Caravan, P. Chem. Soc. Rev. 2006, 35, 512. https://doi.org/10.1039/b510982p
  2. Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Chem. Rev. 1999, 99, 2293. https://doi.org/10.1021/cr980440x
  3. Aime, S.; Botta, M.; Fasano, M.; Terrono, E. Chem. Soc. Rev. 1998, 27, 19. https://doi.org/10.1039/a827019z
  4. Hermann, P.; Kotek, J.; Kubicek, V.; Lukes, I. Dalton Trans. 2008, 3027.
  5. Merbach, A. E.; Toth, E. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging; John Wiley & Sons, Ltd: Chichester, UK, 2001.
  6. Crch, S. G.; Bussolati, B.; Tei, L.; Grange, C.; Esposito, G.; Lanzardo, E.; Camussi, G.; Aime, S. Cancer Res. 2006, 66, 9196. https://doi.org/10.1158/0008-5472.CAN-06-1728
  7. Sitharaman, B. Kissell, K. R.; Hartman, K. B.; Tran, L. A.; Baikalov, A.; Rusakova, I.; Sun, Y.; Khant, H. A.; Ludtke, S. J.; Chiu, W.; Laus, S.; Toth, E.; Helm, L.; Merbach, E.; Wilson, L. J. Chem. Commun. 2005, 3915.
  8. Aime, S.; Botta, M.; Fasano, M.; Genimatti Crich, S.; Terreno, E. Coord. Chem. Rev. 1999, 321, 185.
  9. Aime, S.; Frullano, L.; Crish, S. G. Angew. Chem. Int. Ed. 2002, 41, 1017. https://doi.org/10.1002/1521-3773(20020315)41:6<1017::AID-ANIE1017>3.0.CO;2-P
  10. Reynolds, C. H.; Annan, N.; Beshah, K.; Huberm, J. H.; Shaber, S. H.; Lenkinski, R. E.; Wortman, J. A. J. Am. Chem. Soc. 2000, 122, 8940. https://doi.org/10.1021/ja001426g
  11. Aime, S.; Cabella, C.; Colombatto, S.; Crich, S. G.; Gianolio, E.; Maggioni, F. J. Magn. Res. Imaging. 2002, 16, 394. https://doi.org/10.1002/jmri.10180
  12. Sanchez, P.; Valero, E.; Galvez, N.; Domminguez-Vera, J. M.; Marinone, M.; Poletti, G.; Corti, M.; Lascialfari, A. Dalton Trans. 2009, 800.
  13. Kircher, M. F.; Mahmood, U.; King, R. S.; Weissleder, R.; Josephson, L. Cancer Res. 2003, 63, 8122.
  14. Devaraj, N. K.; Keliher, E. J.; Thurber, G. M.; Nahrendorf, M.; Weissleder, R. Bionconjugate Chem. 2009, 20, 397. https://doi.org/10.1021/bc8004649
  15. Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T. ; Song, I. C.; Moon, W. K.; Hyeon, T. Angew. Chem. 2008, 47, 1. https://doi.org/10.1002/anie.200790254
  16. Hu, K. W.; Jhang, F. Y.; Su, C. H.; Yeh, C. S. J. Mat. Chem. 2009, 19, 2147. https://doi.org/10.1039/b815087g
  17. Lim, Y. T.; Cho, M. Y.; Choi, B. S.; Lee, J. M.; Chung, B. H. Chem. Commun. 2008, 4930.
  18. Fenchel, S.; Fleiter, T. R., Aschoffm A. J.; Gessel, R. V.; Brambs, H. J.; Merkle, E. M. Br. J. Radiol. 2004, 77, 821. https://doi.org/10.1259/bjr/19527646
  19. Enicina, J. L.; Bonmati, L. M.; R-Oms, C. L.; Rodriguez, V. Eur. Radiol. 1997, 7, S115. https://doi.org/10.1007/PL00006875
  20. Hainfeld, J. F.; Slatkin, D. N.; Focella, T. M.; Smilowitz, H. M.; Br. J. Radiol. 2006, 79, 248. https://doi.org/10.1259/bjr/13169882
  21. Kattumuri, V.; Katti, K.; Bhaskaran, S.; Boote, E. J.; Casteel, S. W.; Fent, G. M; Robertson, D. J.; Chandrasekhar, M.; Kannanm R.; Katti, K. V. Small 2007, 3, 333. https://doi.org/10.1002/smll.200600427
  22. Cai, Q. U.; Kim, S. H., Choi, K. S.; Kim, S. Y., Byun, S. J.; Kim, K. W.; Park, S. H.; Juhng, S. K.; Yoon, K. H. Invest Radiol. 2007, 42, 797. https://doi.org/10.1097/RLI.0b013e31811ecdcd
  23. Debouttiere, P. J.; Roux, S.; Vocanson, F.; Bilotey, C.; Beuf, O.; Favre-Reguillon, A.; Lin, Y.; Pellet-Rostaing, S.; Lamartine, R.; Perriat, P.; Tillement, O. Adv. Funct. Mater. 2006, 16, 2330. https://doi.org/10.1002/adfm.200600242
  24. Alric, C.; Taleb, J.; Duc, G. L.; Mandon, C.; Bilotey, C.; Meur-Herland, A. L.; Brochard, T.; Vocanson, F.; Janier, M.; Perriat, P.; Roux, S.; Tillement, O. J. Am. Chem. Soc. 2008, 130, 5908. https://doi.org/10.1021/ja078176p
  25. Dutta, S.; Kim, S. K.; Patel, D. B.; Kim, T. J.; Chang, Y. M. Polyhedron 2007, 26, 3799. https://doi.org/10.1016/j.poly.2007.04.027
  26. Dutta, S.; Park, J. A.; Jung, J. C.; Chang, Y. M.; Kim, T. J. Dalton Trans. 2008, 16, 2199.
  27. Park, J. A.; Lee, J. J.; Jung, J. C.; Yu, D. Y.; Oh, C.; Ha, S.; Kim, T. J.; Chang, Y. M.; ChemBioChem. 2008, 9, 2811. https://doi.org/10.1002/cbic.200800529
  28. Park, J. A.; Reddy, P. A. N.; Kim, H. K.; Kim, I. S.; Kim, G. C.; Chang, Y.; Kim, T. J. Bioorg. Med. Chem. Lett. 2008, 18, 6135. https://doi.org/10.1016/j.bmcl.2008.10.017
  29. Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Anal. Chem. 1995, 67, 735. https://doi.org/10.1021/ac00100a008
  30. Joing Committee of powder diffraction Standard (JCPDS) Card No. 04-0784, 2002.
  31. Yonezawa, T.; Kunitake, T. Coll. Surf. A 1999, 149, 193. https://doi.org/10.1016/S0927-7757(98)00309-4
  32. Daniel, M. C.; Astruc, D. Chem, Rev. 2004, 104, 293. https://doi.org/10.1021/cr030698+
  33. Kim. J. S.; Rieter, W. J.; Taylor, K. M. L.; An, H.; Lin, W. J. Am. Chem. Soc. 2007, 129, 8962. https://doi.org/10.1021/ja073062z
  34. Riester, W. J.; Kim, J. S.; Taylor, K. M. L.; An, H.; Lin, W; Tarrant, T. Angew. Chem. Int. Ed. 2007, 46, 3680. https://doi.org/10.1002/anie.200604738
  35. Alric, C.; Taleb, J.; Duc, G. L.; Mandon, C.; Bilotey, C.; Meur-Herland, A. L.; Brochard, T.; Vocanson, F.; Janier, M.; Perriat, P.; Roux, S.; Tilement, O. J. Am. Chem. Soc. 2008, 130, 5908. https://doi.org/10.1021/ja078176p

Cited by

  1. Strategies for increasing relaxivity of gold nanoparticle based MRI contrast agents vol.13, pp.20, 2011, https://doi.org/10.1039/c0cp02508a
  2. Gold Nanoparticles: Promising Nanomaterials for the Diagnosis of Cancer and HIV/AIDS vol.2011, pp.1687-4129, 2011, https://doi.org/10.1155/2011/202187
  3. Inorganic Nanoparticles Based Contrast Agents for X-ray Computed Tomography vol.1, pp.4, 2012, https://doi.org/10.1002/adhm.201200032
  4. X-ray-Computed Tomography Contrast Agents vol.113, pp.3, 2013, https://doi.org/10.1021/cr200358s
  5. Lanthanide-Functionalized Nanoparticles as MRI and Luminescent Probes for Sensing and/or Imaging Applications vol.53, pp.4, 2014, https://doi.org/10.1021/ic4023568
  6. /Au Nanocomposite Particles for Targeted Dual Mode CT/MR Imaging of Tumors vol.11, pp.35, 2015, https://doi.org/10.1002/smll.201500856
  7. Schiff Base Ligand Coated Gold Nanoparticles for the Chemical Sensing of Fe(III) Ions vol.2015, pp.1687-4129, 2015, https://doi.org/10.1155/2015/101694
  8. Targeted CT imaging of human hepatocellular carcinoma using low-generation dendrimer-entrapped gold nanoparticles modified with lactobionic acid vol.3, pp.2, 2015, https://doi.org/10.1039/C4TB01542H
  9. Poly(acrylic acid) Bridged Gadolinium Metal–Organic Framework–Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging vol.7, pp.32, 2015, https://doi.org/10.1021/acsami.5b03998
  10. An anisotropic propagation technique for synthesizing hyperbranched polyvillic gold nanoparticles vol.9, pp.10, 2016, https://doi.org/10.1007/s12274-016-1174-y
  11. Tc-labeled multifunctional dendrimer-entrapped gold nanoparticles vol.5, pp.21, 2017, https://doi.org/10.1039/C7TB00543A
  12. High magnetic relaxivity in a fluorescent CdSe/CdS/ZnS quantum dot functionalized with MRI contrast molecules vol.53, pp.76, 2017, https://doi.org/10.1039/C7CC05537D
  13. Gold Nanoparticles Coated with Manganese–Porphyrin That Effectively Shorten the Longitudinal Relaxation Time of Water Molecules Depending on the Particle Size vol.43, pp.12, 2014, https://doi.org/10.1246/cl.140812
  14. An albumin-based gold nanocomposites as potential dual mode CT/MRI contrast agent vol.20, pp.2, 2018, https://doi.org/10.1007/s11051-018-4145-2
  15. Gold nanoparticles as computerized tomography (CT) contrast agents vol.2, pp.33, 2012, https://doi.org/10.1039/c2ra21263c
  16. Multifunctional dendrimer-based nanoparticles for in vivo MR/CT dual-modal molecular imaging of breast cancer vol.8, pp.None, 2010, https://doi.org/10.2147/ijn.s46177
  17. Gadolinium(III) based nanoparticles for T1-weighted magnetic resonance imaging probes vol.6, pp.65, 2010, https://doi.org/10.1039/c6ra07782j
  18. Recent advances in the development of nanoparticles for multimodality imaging and therapy of cancer vol.40, pp.3, 2010, https://doi.org/10.1002/med.21642
  19. Gadolinium-Labeled Ferritin Nanoparticles as T1 Contrast Agents for Magnetic Resonance Imaging of Tumors vol.3, pp.9, 2020, https://doi.org/10.1021/acsanm.0c01563
  20. Biogenic Synthesis of Gold Nanoparticles on a Green Support as a Reusable Catalyst for the Hydrogenation of Nitroarene and Quinoline vol.16, pp.14, 2010, https://doi.org/10.1002/asia.202100385
  21. Functionalized nanoporous gold membrane for pancreatic islet cells encapsulation vol.301, pp.None, 2010, https://doi.org/10.1016/j.matlet.2021.130224