DOI QR코드

DOI QR Code

Liquid Membrane Permeation of Nitrogen Heterocyclic Compounds Contained in Model Coal Tar Fraction

  • Kim, Su-Jin (Department of Materials Science and Applied Chemistry, Chungwoon University) ;
  • Kang, Ho-Cheol (Green Chemistry Division, Korea Research Institutes of Chemical Technology) ;
  • Kim, Yong-Shik (Department of Architectural Engineering, University of Incheon) ;
  • Jeong, Hwa-Jin (Department of Fashion & Textile Engineering, Chungwoon University)
  • Received : 2009.10.11
  • Accepted : 2010.02.23
  • Published : 2010.05.20

Abstract

We investigated the separation of nitrogen heterocyclic compound (NHC) contained in a model coal tar fraction comprising four kinds of NHC [indole (In), quinoline (Q), iso-quinoline (iQ), quinaldine (Qu)], three kinds of bicyclic aromatic compound (BAC) [1-methylnaphthalene (1MN), 2-methylnaphthalene (2MN), dimethylnaphthalene (DMN) mixture with ten structural isomers (DMNs; regarded as one component)], biphenyl (Bp) and phenyl ether (Pe) by liquid membrane permeation (LMP). A batch-stirred tank was used as the permeation unit. An aqueous solution of saponin and n-hexane were used as the liquid membrane and the outer oil phase, respectively. Yield and selectivity of individual NHC was much larger than that of BAC, Bp and Pe. Increasing the initial mass fraction of the saponin to the membrane solution ($C_{sap,0}$) and the initial volume fraction of O/W emulsion to total liquid in a stirred tank (${\phi}_{OW,0}$) resulted in deteriorating the yield of individual NHC, but increasing the stirring speed (N) resulted in improving the yield of each NHC. With increasing $C_{sap,0}$, the selectivity of each NHC based on DMNs increased. Increasing ${\phi}_{OW,0}$ and N resulted in decreasing the selectivity of individual NHC based on DMNs. At an experimental condition fixed, the sequence of the yield and selectivity in reference to DMNs for each NHC was Q > Qu = iQ > In. Furthermore, we compared LPM method with methanol extraction method in view of the separation efficiency (yield, selectivity) of NHC.

Keywords

References

  1. Yamamoto, Y.; Sato, Y.; Ebina, T.; Yokoyama, C.; Takahasi, S.; Mito, Y.; Tanabe, H.; Nishiguchi, N.; Nagaoka, K. Fuel 1991, 70, 565. https://doi.org/10.1016/0016-2361(91)90039-D
  2. Uemasu, I.; Nakayama, T. J. Inclus. Phenom. Molec. Recogn. Chem. 1989, 7, 327. https://doi.org/10.1007/BF01076986
  3. Uemasu, I. Journal of the Japan Petroleum Institute 1991, 34(4), 371. https://doi.org/10.1627/jpi1958.34.371
  4. Kim, S. J.; Chun, Y. J. Sep. Sci. Techno. 2005, 36(16), 2095.
  5. Fei, Y. Q.; Sakanishi, K.; Sun, Y. N. Fuel 1990, 69(2), 261. https://doi.org/10.1016/0016-2361(90)90186-T
  6. Ukegawa, K.; Matsumura, A.; Kodera, Y.; Kondo, T.; Nakayama, T.; Tanabe, H.; Yoshida, S.; Mito, Y. Journal of the Japan Petroleum Institute 1990, 33(4), 250. https://doi.org/10.1627/jpi1958.33.250
  7. Egashira, R.; Nagai, M. Journal of the Japan Petroleum Institute 2000, 43(5), 339. https://doi.org/10.1627/jpi1958.43.339
  8. Egashira, R.; Salim, C. Journal of the Japan Petroleum Institute 2001, 44(3), 178. https://doi.org/10.1627/jpi1958.44.178
  9. Kodera, Y.; Ukegawa, K.; Mito, Y.; Komoto, M.; Ishikawa, E.; Nagayama, T. Fuel 1991, 70(6), 765. https://doi.org/10.1016/0016-2361(91)90076-M
  10. Mochida, I.; Fei, Y. Q.; Sakanishi, K. Chem. Lett. 1990, 515.
  11. Li, N. N. US Patent 1968, 3,410,794.
  12. Li, N. N. AIChE J. 1971, 17(2), 459. https://doi.org/10.1002/aic.690170239
  13. Li, N. N. Ind. Eng. Chem. Process Des. Develop. 1971, 10(2), 215. https://doi.org/10.1021/i260038a014
  14. Kim, S. J.; Kim, S. C. Sep. Sci. Techno. 2004, 39(5), 1093.
  15. Egashira, R.; Kawasaki, J. Journal of the Japan Petroleum Institute 1997, 40(2), 107. https://doi.org/10.1627/jpi1958.40.107
  16. Kato, S.; Kawasaki, J. Journal of the Japan Petroleum Institute 1986, 29(5), 404. https://doi.org/10.1627/jpi1958.29.404
  17. Kato, S.; Kawasaki, J. Journal of the Japan Petroleum Institute 1987, 30(1), 1. https://doi.org/10.1627/jpi1958.30.1
  18. Kato, S.; Kawasaki, J. Kagaku Kogaku Ronbunshu 1987, 13(1), 93. https://doi.org/10.1252/kakoronbunshu.13.93
  19. Kato, S.; Kawasaki, J. Journal of the Japan Petroleum Institute 1987, 30(4), 243. https://doi.org/10.1627/jpi1958.30.243
  20. Kim, S. J.; Kim, S. C.; Kawasaki, J. Sep. Sci. Techno. 1997, 32(7), 1209. https://doi.org/10.1080/01496399708000956
  21. Kim, S. J.; Kim, S. C.; Kawasaki, J. Sep. Sci. Techno. 2001, 36(16), 3585. https://doi.org/10.1081/SS-100108350

Cited by

  1. Methanol Extraction of Nitrogen Heterocyclic Compound Contained in Model Coal Tar Fraction of Nine Components System vol.25, pp.2, 2014, https://doi.org/10.14478/ace.2013.1110
  2. High-Purity Purification of Indole Contained in Coal Tar Absorption Oil by Extraction-Distillation-Crystallization Combination vol.25, pp.3, 2014, https://doi.org/10.14478/ace.2014.1042
  3. Comparison of Methanol with Formamide on Extraction of Nitrogen Heterocyclic Compounds Contained in Model Coal Tar Fraction vol.26, pp.2, 2015, https://doi.org/10.14478/ace.2015.1003
  4. Separation and Purification of Indole in Model Coal Tar Fraction of 9 Compounds System pp.1563-5333, 2016, https://doi.org/10.1080/10406638.2016.1259170
  5. Mass Transfer Rate in Separation of Coal Tar Absorption Oil by Emulsion Liquid Membranes vol.46, pp.6, 2010, https://doi.org/10.1252/jcej.12we250
  6. Enhancement of Permeation Rate of Nitrogen Heterocyclic Compounds for Emulsion Liquid Membrane Separation of Coal Tar Absorption Oil vol.47, pp.3, 2010, https://doi.org/10.1252/jcej.13we153
  7. Comparison of Methanol with Formamide on Separation of Nitrogen Heterocyclic Compounds from Model Coal Tar Fraction by Batch Cocurrent Multistage Equilibrium Extraction vol.36, pp.5, 2010, https://doi.org/10.1080/10406638.2015.1048894
  8. 결정화조작에 의한 접촉분해경유 유분에 함유된 2,6-디메틸나프탈렌의 분리·정제 vol.29, pp.6, 2010, https://doi.org/10.14478/ace.2018.1073
  9. 회분 병류 4단 평형추출에 의한 폐플라스틱 열분해유 유분 중의 파라핀 성분의 회수 vol.29, pp.5, 2018, https://doi.org/10.14478/ace.2018.1051
  10. 디메틸포름아마이드 추출에 의한 폐플라스틱 열분해유 유분의 품질향상 vol.30, pp.2, 2019, https://doi.org/10.14478/ace.2018.1118
  11. Comparison of Dimethylformamide with Dimethylsulfoxide for Quality Improvement of Distillate Recovered from Waste Plastic Pyrolysis Oil vol.8, pp.9, 2010, https://doi.org/10.3390/pr8091024