DOI QR코드

DOI QR Code

Relative Photonic Properties of Fe/TiO2-Nanocarbon Catalysts for Degradation of MB Solution under Visible Light

  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Zhang, Feng-Jun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Meng, Ze-Da (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Zhang, Kan (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Received : 2010.12.16
  • Accepted : 2010.02.23
  • Published : 2010.05.20

Abstract

Nanocarbon supported Fe/$TiO_2$ composite catalysts were prepared using CNTs (carbon nanotubes) and $C_{60}$ (fullerene) as nanocarbon sources by a modified sol-gel method. The Fe/$TiO_2$-nanocarbon composites were characterized by the BET surface area, scanning electron microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) and UV-vis spectra. In comparison with non-nanocarbon doped Fe/$TiO_2$ composites, the nanocarbon supported Fe/$TiO_2$ composites had higher absorption ability with a larger specific surface area, and showed higher photocatalytic activity during the degradation of methylene blue (MB) under visible light. The reasons for the obvious increase of photocatalytic activity indicated that the photoactivity not only benefits from nanocarbon introduced, but also relates to the cooperative effect of the Fe as a dopant.

Keywords

References

  1. Ghasemi, S.; Rahimnejad, S.; Setayesh, S. R.; Rohani, S.; Gholami, M. R. J. Hazar. Mater. 2009, 172, 1573. https://doi.org/10.1016/j.jhazmat.2009.08.029
  2. Navio, J. A.; Macia,s M.; Gonzalez-Catalan, M.; Justo, A. J. Mater. Sci. 1992, 27, 3036. https://doi.org/10.1007/BF01154116
  3. Bickley, R. I.; Lees, J. S.; Tilley, R. J. D.; Palmisano, L.; Schiavello, M. J. Chem. Soc. Faraday. Trans. 1992, 88, 377. https://doi.org/10.1039/ft9928800377
  4. Hung, W. C.; Chen, Y. C.; Chu, H.; Tseng, T. K. Appl. Sur. Sci. 2008, 255, 2205. https://doi.org/10.1016/j.apsusc.2008.07.079
  5. Yang X. X.; Cao, C. D.; Erickson, L.; Hohn, K.; Maghirang, R.; Klabunde, K. Appl. Catal. B. Env. 2009, 91, 657. https://doi.org/10.1016/j.apcatb.2009.07.006
  6. Tachikawa, T.; Tojo, S.; Kawai, K.; Endo, M.; Fujitsuka, M.; Ohno, T.; Nishijima, K.; Miyamoto, Z.; Majima, T. J. Phys. Chem. B 2004, 108, 19299. https://doi.org/10.1021/jp0470593
  7. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, A.; Taga, Y. Sci. 2001, 193, 269.
  8. Ohno, T.; Mitsui, T.; Matsumura, M. Chem. Lett. 2003, 32, 364. https://doi.org/10.1246/cl.2003.364
  9. Wang, X.; Meng, S.; Zhang, X.; Wang, H.; Zhang, W.; Du, Q. Chem. Phys. Lett. 2007, 444, 292. https://doi.org/10.1016/j.cplett.2007.07.026
  10. Tryba, B. J. Hazard. Mater. 2008, 151, 623. https://doi.org/10.1016/j.jhazmat.2007.06.034
  11. Yang, X.; Cao, C.; Hohn, K.; Erickson, L.; Maghirang, R.; Klabunde, K. J. Catal. 2007, 252, 296. https://doi.org/10.1016/j.jcat.2007.09.014
  12. Oh, W. C.; Jung, A. R.; Ko, W. B. Mater. Sci. Eng. C 2009, 29, 1338. https://doi.org/10.1016/j.msec.2008.10.034
  13. Zhang, F. J.; Chen, M. L.; Oh, W. C. Bull. Korean Chem. Soc. 2009, 30, 1798 https://doi.org/10.5012/bkcs.2009.30.8.1798
  14. Cao, G. Nanostructures & Nanomaterials; Imperial College Press: London 2004, 344.
  15. Oh, W. C.; Jung, A. R.; Ko, W. B. J. Ind. Eng. Chem. 2007, 13, 1208.
  16. Zhang, Y.; Kohler, N.; Zhang, M. Q. Biomater. 2002, 23, 1553. https://doi.org/10.1016/S0142-9612(01)00267-8
  17. Oh, W. C.; Chen, M. L. Bull. Korean Chem. Soc. 2008, 29, 159. https://doi.org/10.5012/bkcs.2008.29.1.159
  18. Chen, M. L.; Bae, J. S.; Oh, W. C. Anal Sci& Technol. 2006, 19, 460.
  19. Neri, G.; Visco, A. M.; Galvagno, S.; Donato, A.; Panzalorto, M. Thermochimica Acta 1999, 329, 39. https://doi.org/10.1016/S0040-6031(98)00664-9
  20. Chen, L.C.; Ho, Y.C.; Guo, W.S.; Huang, C. M.; Pan, T. C. Electrochimica Acta 2009, 54, 3884. https://doi.org/10.1016/j.electacta.2009.02.001
  21. Pera-Titus, M.; García-Molina, V.; Baños, M. A.; Giménez, J.; Esplugas, S. Appl. Catal. B. Env. 2004, 47, 219. https://doi.org/10.1016/j.apcatb.2003.09.010
  22. Neamtu, M.; Yediler, A.; Siminiceanu, I.; Kettrup, A. J. Photochem. Photobiol. A 2003, 161, 87. https://doi.org/10.1016/S1010-6030(03)00270-3
  23. Tu, Y. F.; Huang, S. Y.; Sang, J. P.; Zou, X. W. Mater. Res. Bull. 2009, doi:10.1016/j.materresbull.2009.08.020.
  24. Kamat, P.V.; Gevaert, M. J. Phys. Chem. B 1997, 101, 4422. https://doi.org/10.1021/jp970047f
  25. Kamat, P. V.; Bedja, I.; Hotchandani, S. J. Phys. Chem. 1994, 98, 9137. https://doi.org/10.1021/j100088a008
  26. Oh, W. C.; Ko, W. B. J. Ind. Eng. Chem. 2009, 15, 791. https://doi.org/10.1016/j.jiec.2009.09.001
  27. An, G. M.; Ma, W. H.; Sun, Z. Y.; Liu, Z. M.; Han, B. X.; Miao, S. D.; Miao, Z. J.; Ding, K. L. Carbon 2007, 45, 1795. https://doi.org/10.1016/j.carbon.2007.04.034
  28. Chen, M. L.; Zhang, F. J.; Oh, W. C. New Carbon Materials 2009, 24, 159. https://doi.org/10.1016/S1872-5805(08)60045-1

Cited by

  1. Composites and Their Photocatalytic Activity Under Visible Light vol.48, pp.3, 2011, https://doi.org/10.4191/KCERS.2011.48.3.211
  2. Synthesis and Characterization of Metal (Pt, Pd and Fe)-graphene Composites vol.48, pp.2, 2011, https://doi.org/10.4191/kcers.2011.48.2.147
  3. Enhanced photocatalytic performance of Bi2WO6 by graphene supporter as charge transfer channel vol.86, pp.None, 2010, https://doi.org/10.1016/j.seppur.2011.10.025
  4. Photocatalytic degradation of reactive red 3 and alachlor over uncalcined Fe-TiO2 synthesized via hydrothermal method vol.57, pp.46, 2010, https://doi.org/10.1080/19443994.2015.1125797
  5. Zinc Porphyrin-Functionalized Fullerenes for the Sensitization of Titania as a Visible-Light Active Photocatalyst: River Waters and Wastewaters Remediation vol.24, pp.6, 2010, https://doi.org/10.3390/molecules24061118