DOI QR코드

DOI QR Code

국내산 돼지고기의 원산지 검증을 위한 SNP Marker Set 개발

Development of SNP Markers for Domestic Pork Traceability

  • 김상욱 (충북대학교 농업생명환경대학 축산학과) ;
  • 이소평 (충북대학교 농업생명환경대학 축산학과) ;
  • 이윤미 (영남대학교 생명공학부) ;
  • 김종주 (영남대학교 생명공학부) ;
  • 김태헌 (농촌진흥청 국립축산과학원) ;
  • 최봉환 (농촌진흥청 국립축산과학원) ;
  • 김관석 (충북대학교 농업생명환경대학 축산학과)
  • Kim, Sang-Wook (Department of Animal Science, Chungbuk National University) ;
  • Li, Xiaoping (Department of Animal Science, Chungbuk National University) ;
  • Lee, Yun-Mi (School of Biotechnology, Yeungnam University) ;
  • Kim, Jong-Joo (School of Biotechnology, Yeungnam University) ;
  • Kim, Tae-Hun (National Institute of Animal Science, Rural Development Administration) ;
  • Choi, Bong-Hwan (National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Kwan-Suk (Department of Animal Science, Chungbuk National University)
  • 투고 : 2009.11.09
  • 심사 : 2010.02.11
  • 발행 : 2010.04.30

초록

본 연구는 돼지고기 원산지 식별에 활용될 수 있는 최적의 SNP marker set을 개발 및 확립하기 위해 수행되었다. 선발된 51개의 SNP marker들의 효율성, 다형성 및 독립성 검증을 실시하였으며 51개의 SNP marker set은 MassARRAY method에 의해서 Multiplex-PCR panel 4개로 디자인 되었으며, 농장별, 생산조합별, 모돈별, 웅돈별로 효과적으로 고유 유전자형 지문분석이 가능하게 제작되었고, 다른형태의 SNP 유전자형 분석 플랫폼에 적용될 수 있는 적절한 마커 갯수이다. 또한 51개의 SNP marker set을 적용하여 모의 실험 및 친자감별확율을 계산하였을 때 무작위 교배 집단(PI), 반형매 교배집단($PI_{half-sib}$)과 전형매 교배집단($PI_{sibs}$)을 통해 모의 실험을 한 결과 $5.63{\times}10^{-33}$, $4.35{\times}10^{-15}$ 그리고 $1.32{\times}10^{-15}$로 분석되었으며 친자확인률에서도 모두 100%에 가까운 확률값을 나타내었다. 따라서 본 연구에서 개발된 SNP marker set을 이용하여 돈육제품의 원산지를 추적에 이용한다면 개별돼지의 고유한 DNA 지문 정보를 생성할 뿐만 아니라, 이를 통하여 모돈과 웅돈을 식별하여 농장원산지를 확인이 가능 할 수 있을 것으로 사료된다. 따라서 국내산 돼지의 생산에서부터 돈육제품으로의 소비까지 이력추적이 가능한 도구로 제공 될 것이다.

The purpose of the study was to develop an optimum SNP marker set to be utilized for domestic pork traceability. The study tested 51 SNP markers analyzed for origin of farm to be determined from genotypes of offspring and parents in pigs. With the simulation data through random mating population (PI), half sib mating population ($PI_{half-sib}$) and full sib mating population ($PI_{sibs}$), probability of identical genotypes were analyzed as $5.63{\times}10^{-33}$, $4.35{\times}10^{-15}$ and $1.32{\times}10^{-15}$, respectively. The 51 SNP markers also had 100% accuracy for parental determination. These results suggest that if the pig breeding stock is genotyped with the 51 SNP markers, the genotype information of individual offspring can be checked for farm origins by tracing parental sow and sire. Therefore, these SNP markers will be useful to trace the pork from production to consumption in pigs.

키워드

참고문헌

  1. Anderson, E. C. and Garza., J. C. 2006. The power of singlenucleotide polymorphisms for large-scale parentage inference. Genetics 172:2567-2582. https://doi.org/10.1534/genetics.105.048074
  2. Barrett, J. C., Fry, B., Maller, J. and Daly, M. J. 2005. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 15:263-265.
  3. Baruch, E. and Weller, J. I. 2008. Estimation of the number of SNP genetic markers required for parentage verification. Anim. Genet. 39:474-479. https://doi.org/10.1111/j.1365-2052.2008.01754.x
  4. Dodds, K. G., Tate, M. L. and Sise, J. A. 2005. Genetic evaluation using parentage information from genetic markers. J. Anim. Sci. 83:2271-2279. https://doi.org/10.2527/2005.83102271x
  5. Eenennaam, A. L. V., Weaber, R. L., Drake, D. J., Penedo, M. C. T., Quaas, R. L., Garrick, D. J. and Pollak, E. J. 2007. DNA-based paternity analysis and genetic evaluation in a large, commercial cattle ranch setting. J. Anim. Sci. 85:3159-3169. https://doi.org/10.2527/jas.2007-0284
  6. Gomez-Raya, L., Priest, K., Rauw, W. M., Okomo-Adhiambo, M., Thain, D., Bruce, B., Rink, A., Torell, R., Grellman, L., Narayanan, R. and Beattie, C. W. 2008. The value of DNA paternity identification in beef cattle: Examples from Nevada's free-range ranches. J. Anim. Sci. 86:17-24. https://doi.org/10.2527/jas.2007-0068
  7. Heaton, M. P., Harhay, G. P., Bennett, G. L., Stone, R. T., Grosse, W. M., Casas, E., Keele, J. W., Smith, T. P. L., Chitko- McKown, C. G. and Laegreid, W. W.. 2002. Selection and use of SNP markers for animal identification and paternity analysis in US beef cattle. Mamm. Genome 13:272-281. https://doi.org/10.1007/s00335-001-2146-3
  8. Hill, W. G., Salisbury, B. A. and Webb, A. J. 2008. Parentage identification using SNP genotypes: application to product tracing. J. Anim. Sci. 86:2508-2517. https://doi.org/10.2527/jas.2007-0276
  9. Honda, T., Katsuta, T. and Mukai, F. 2009. Simulation Study on Parentage Analysis with SNPs in the Japanese Black Cattle Population. Asian-Aust. J. Anim. Sci. 10:1351-1358.
  10. Jones, A. G. 2005. GERUD2.0: A computer program for the reconstruction of parental genotypes from half-sib progeny arrays with known or unknown parents. Mol. Ecol. Notes. 5:708. https://doi.org/10.1111/j.1471-8286.2005.01029.x
  11. Kaul, R., Singh, A., Vijh, R. K., Tantia, M. S. and Behl, R. 2001. Evaluation of the genetic variability of 13 microsatellite markers in native Indian pigs. J. Genet. 80:149-153. https://doi.org/10.1007/BF02717911
  12. Li, X. P., Hu, Z. L., Moon, S. J., Do, K. T., Ha, Y. K., Kim, H., Byun, M. J., Choi, B. H., Rothschild, M. F., Reecy, J. M. and Kim, K. S. 2008. Development of an in silico coding gene SNP map in pigs. Anim. Genet. 10:1365-2052.
  13. Lim, H. T., Seo, B. Y., Jung, E. J., Yoo, C. K., Zhong T., Cho, I. C., Yoon, D. H., Lee, J. G. and Jeon, J. T. 2009. Establishment of a microsatellite marker set for individual, pork brand and product origin identification in pigs. K. J. Anim Sci & Tech. 3:201-206.
  14. Rohrer, G. A., Freking, B. A. and Nonneman, D. 2007. Single nucleotide polymorphisms for pig identification and parentage exclusion. Anim. Genet. 38:253-258. https://doi.org/10.1111/j.1365-2052.2007.01593.x
  15. Stephens, M. and Donnelly, P. 2003. A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 73:1162-1169. https://doi.org/10.1086/379378
  16. Storm, N. 2003. MALDI-TOF mass spectrometry-based SNP genotyping. Methods Mol. Biol. 212:241-262.
  17. Tang, K. 2003. Single nucleotide polymorphism analyses by MALDITOF MS. Int. J. Mass. Spec. 226:37-54. https://doi.org/10.1016/S1387-3806(02)00980-6
  18. Thompson, C. L., Baechle, D., Lu, Q., Mathew, G., Song, Y., Iyengar, S. K., Gray-McGuire, C. and Goddard, K. A. 2005. Effect of genotyping error in model-free linkage analysis using microsatellite or single-nucleotide polymorphism marker maps. BMC. Genet. 6:S153. https://doi.org/10.1186/1471-2156-6-S1-S153
  19. Ulgen, A. and Li, W. 2005. Comparing single-nucleotide polymorphism marker-based and microsatellite marker-based linkage analyses. BMC. Genet. 10:1471-2156.
  20. Werner, F. A. O., Durstewitz, G., Habermann, F. A., Thaller, G., Krämer, W., Kollers, S., Buitkamp, J., Georges, M., Brem, G., Mosner, J. and Fries, R. 2004. Detection and characterization of SNPs useful for identity control and parentage testing in major European dairy breeds. Anim. Genet. 35:44-49. https://doi.org/10.1046/j.1365-2052.2003.01071.x
  21. 농림수산식품부. 2008. 농림수산 식품 통계연보

피인용 문헌

  1. Genetic Composition of Korean Native Chicken Populations - National Scale Molecular Genetic Evaluation Based on Microsatellite Markers vol.38, pp.2, 2011, https://doi.org/10.5536/KJPS.2011.38.2.081