An Efficient Converter Placement in Wavelength-Routed WDM Networks with Sparse-Partial-Limited Wavelength Conversion

파장분할다중화 광통신망에서 산재-부분-제한영역 파장 변환기의 효율적인 배치 알고리듬

  • 정한유 (부산대학교 차세대물류IT기술연구사업단) ;
  • 서승우 (서울대학교 전기공학부) ;
  • 최윤호 (삼성전자 DMC연구소)
  • Received : 2010.08.30
  • Accepted : 2010.11.12
  • Published : 2010.11.30

Abstract

In this paper, we present a new analytical model that can precisely estimate the blocking performance of wavelength-routed WDM networks with sparse-partial-limited wavelength conversion (SPLWC). The proposed model accounts for the two sources of call blocking in a wavelength converter: range blocking originated from the limited conversion range of a wavelength converter; and capacity blocking induced from the limited number of wavelength converters. Based on the proposed model, we also present a new converter placement algorithm that minimizes the amount of wavelength conversion capability, while satisfying the given constraint on the network-wide blocking probability. From the numerical results obtained from the EON, we demonstrate that the blocking probability of the analytical model closely matches with that of the simulation. We also show that, by efficiently combining the existing sparse, partial, and limited wavelength conversion, the SPL WC can achieve the required blocking performance with the least amount of wavelength conversion cost.

본 논문에서는 산재-부분-제한영역 파장 변환 방식의 파장분할다중화 광통신망의 불통 확률을 정확하게 계산할 수 있는 수학적 성능분석 모형을 제안하고, 이를 기반으로 파장 변환기를 효율적으로 배치하는 파장 변환기 배치 알고리듬을 제시한다. 제안하는 성능분석 모형은 파장 변환기의 제한된 파장 변환 영역으로 발생하는 영역 불통(Range Blocking)과 파장 변환기의 개수 제약으로 발생하는 용량 불통(Capacity Blocking)을 이론적으로 도출하는 최초의 성능분석 모형이다. 유럽 광통신망에서 수행한 시뮬레이션 결과를 통해 제안하는 성능분석 모형이 광통신망의 불통확률을 정확히 예측함을 보인다. 또한, 기존에 알려진 산재 파장 변환 방식, 부분 파장 변환 방식, 또는 제한영역 파장 변환 방식들과 비교할 때, 이들을 효율적으로 결합한 산재-부분-제한영역 파장 변환 방식이 최소의 파장 변환 비용으로 주어진 광통신망의 불통 성능을 달성할 수 있음을 보인다.

Keywords

References

  1. R. Ramaswami and K. N. Sivarajan, "Routing and Wavelength Assignment in All-Optical Networks," IEEE Trans. Networking, Vol.3, No.5, pp.489-500, Oct. 1995. https://doi.org/10.1109/90.469957
  2. R. A. Barry and P. A. Humblet, "Models of Blocking Probability in All-Optical Networks with and without Wavelength Changers," IEEE J. Select. Areas Commun., Vol.14, No.5, pp.858-867, June 1996. https://doi.org/10.1109/49.510909
  3. A. Birman, "Computing Approximate Blocking Probabilities for a Class of All-Optical Networks," IEEE J. Select. Areas Commun., Vol.14, No.5, June 1996.
  4. T. Tripathi and K. N. Sivarajan, "Computing Approximate Blocking Probabilities in Wavelength Routed All-Optical Networks with Limited-Range Wavelength Conversion," IEEE J. Select. Areas Commun., Vol.18, No.10, Oct. 2000.
  5. V. Sharma and E. A. Varvarigos, "An Analysis of Limited Wavelength Translation in Regular All-Optical WDM Networks," IEEE/OSA J. Lightwave TechNo., Vol.18, No.12, pp.1606-1619, Dec. 2000.
  6. K.-C. Lee and V. O. K. Li, "A Wavelength- Convertible Optical Network," IEEE/OSA J. of Lightwave TechNo., Vol.11, No.5/6, pp.962- 970, May/June 1993. https://doi.org/10.1109/50.233260
  7. G. Xiao and Y.-W. Leung, "Algorithms for Allocating Wavelength Converters in All-Optical Networks," IEEE/ACM Trans. Networking, Vol.7, No.4, pp.545-557, Aug. 1999. https://doi.org/10.1109/90.793026
  8. S. Subramaniam, M. Azizoglu, and A. K. Somani, "All-Optical Networks with Sparse Wavelength Conversion," IEEE/ACM Trans. Networking, Vol.4, No.4, pp.544-557, Aug. 1996. https://doi.org/10.1109/90.532864
  9. M. E. Houmaidi and M. A. Bassiouni, "Dependency-based analytical model for computing connection blocking rate and its application in the sparse placement of optical converters," IEEE Trans. Commun., Vol.54, No.1, pp.159-168, Jan. 2006. https://doi.org/10.1109/TCOMM.2005.861649
  10. S. Subramaniam, M. Azizoglu, and A. K. Somani, "On Optimal Converter Placement in Wavelength-Routed Networks," IEEE/ACM Trans. Networking, Vol.7, No.5, pp.754-766, Oct. 1999. https://doi.org/10.1109/90.803388
  11. S. Gao, X. Jia, C. Huang, and D.-Z. Du, "An Optimization Model for Placement of Wavelength Converters to Minimize Blocking Probability in WDM Networks," IEEE/OSA J. of Lightwave TechNo., Vol.21, No.3, March 2003.
  12. A. S. Arora and S. Subramaniam, "Converter Placement in Wavelength Routing Mesh Topologies," in Proc. IEEE ICC, June 2000, pp.1282-1288.
  13. X. Chu, B. Li, and I. Chlamtac, "Wavelength Converter Placement Under Different RWA Algorithms in Wavelength-Routed All-Optical Networks," IEEE Trans. Commun., Vol.51, No.4, pp.607-617, Apr. 2003. https://doi.org/10.1109/TCOMM.2003.810834
  14. X. Chu, J. Liu, and Z. Zhang, "Analysis of Sparse-Partial Wavelength Conversion in Wavelength-Routed WDM Networks," in Proc. IEEE INFOCOM'04, Apr. 2004.
  15. K. R. Venugopal, M. Shivakumar and P. S. Kumar, "A Heuristic for Placement of Limited Range Wavelength Converters in All-Optical Networks," in Proc. IEEE INFOCOM'99, March 1999, pp.908-915.
  16. H.-Y. Jeong and S.-W. Seo, "A Binary (0-1) Linear Program (BLP) Formulation for the Placement of Limited-Range Wavelength Converters in Wavelength-Routed WDM Networks," IEEE/OSA J. Lightwave TechNo., Vol.23, No.10, pp.3076-3091, Oct. 2005. https://doi.org/10.1109/JLT.2005.855669