References
- T. Hara & T. Yoneyama: On the global cent er of generalized Lienard equation and its applications to stability problems. Funkcial Ekvac. 28 (1985),171-192.
- C. Ding: The homoclinic orbits in the Lienard plane. J. Math. Anal. Appl. 191 (1995), 26-39. https://doi.org/10.1016/S0022-247X(85)71118-3
- J. Sugie, D.L. Chen & H. Matsunaga: On global asymptotic stability of systems of Lienard type. J. Math. Anal. Appl. 219 (1998), 140-164. https://doi.org/10.1006/jmaa.1997.5773
- Y. Ding & M. Girardi: Infinitely many homoclinic orbits of a Hamiltonian system with symmetry. Nonlinear Analysis 38 (1999), 391-415. https://doi.org/10.1016/S0362-546X(98)00204-1
- P. Bernard: Homoclinic orbits in families of hypersurfaces with hyperbolic periodic orbits. J. Diff. Equas. 180 (2002), 427-452. https://doi.org/10.1006/jdeq.2001.4062
- M. Schechter & W. Zou: Homoclinic orbits for Schrodinger systems. Michigan Math. J. 51 (2003), 59-71. https://doi.org/10.1307/mmj/1049832893
- J. Sugie: Lienard dynamics with an open limit orbits. Nonlinear Differential Equations Appl. 8 (2001), 83-97. https://doi.org/10.1007/PL00001440
- J. Sugie: Homoclinic orbits in generalized Lienard systems. J. Math. Anal. Appl. 309 (2005), 211-226. https://doi.org/10.1016/j.jmaa.2005.01.023
- A. Aghajani & A. Moradifam: On the homoclinic orbits of the generalized Lienard equations. Appl. Math. Letters. 20 (2007), 345-351. https://doi.org/10.1016/j.aml.2006.05.004
- J. Sugie, A. Kono & A. Yamaguchi: Existence of limit cycles for Lienard-type systems with p-Laplacian. Nonlinear Differ. Equ. Appl. 14, (2007), 91-110. https://doi.org/10.1007/s00030-006-4045-5