EXISTENCE OF HOMOCLINIC ORBITS FOR LIENARD TYPE SYSTEMS

  • Received : 2010.08.19
  • Accepted : 2010.11.22
  • Published : 2010.11.30

Abstract

We investigate the existence of homoclinic orbits of the following systems of $Li{\'{e}}nard$ type: $a(x)x^'=h(y)-F(x)$, $y^'$=-a(x)g(x), where $h(y)=m{\mid}y{\mid}^{p-2}y$ with m > 0 and p > 1 and a, F, 9 are continuous functions such that a(x) > 0 for all $x{\in}{\mathbb{R}}$ and F(0)=g(0)=0 and xg(x) > 0 for $x{\neq}0$. By a series of time and coordinates transformations of the above system, we obtain sufficient conditions for the positive orbits of the above system starting at the points on the curve h(y) = F(x) with x > 0 to approach the origin through only the first quadrant. The method of this paper is new and the results of this paper cover some early results on this topic.

Keywords

References

  1. T. Hara & T. Yoneyama: On the global cent er of generalized Lienard equation and its applications to stability problems. Funkcial Ekvac. 28 (1985),171-192.
  2. C. Ding: The homoclinic orbits in the Lienard plane. J. Math. Anal. Appl. 191 (1995), 26-39. https://doi.org/10.1016/S0022-247X(85)71118-3
  3. J. Sugie, D.L. Chen & H. Matsunaga: On global asymptotic stability of systems of Lienard type. J. Math. Anal. Appl. 219 (1998), 140-164. https://doi.org/10.1006/jmaa.1997.5773
  4. Y. Ding & M. Girardi: Infinitely many homoclinic orbits of a Hamiltonian system with symmetry. Nonlinear Analysis 38 (1999), 391-415. https://doi.org/10.1016/S0362-546X(98)00204-1
  5. P. Bernard: Homoclinic orbits in families of hypersurfaces with hyperbolic periodic orbits. J. Diff. Equas. 180 (2002), 427-452. https://doi.org/10.1006/jdeq.2001.4062
  6. M. Schechter & W. Zou: Homoclinic orbits for Schrodinger systems. Michigan Math. J. 51 (2003), 59-71. https://doi.org/10.1307/mmj/1049832893
  7. J. Sugie: Lienard dynamics with an open limit orbits. Nonlinear Differential Equations Appl. 8 (2001), 83-97. https://doi.org/10.1007/PL00001440
  8. J. Sugie: Homoclinic orbits in generalized Lienard systems. J. Math. Anal. Appl. 309 (2005), 211-226. https://doi.org/10.1016/j.jmaa.2005.01.023
  9. A. Aghajani & A. Moradifam: On the homoclinic orbits of the generalized Lienard equations. Appl. Math. Letters. 20 (2007), 345-351. https://doi.org/10.1016/j.aml.2006.05.004
  10. J. Sugie, A. Kono & A. Yamaguchi: Existence of limit cycles for Lienard-type systems with p-Laplacian. Nonlinear Differ. Equ. Appl. 14, (2007), 91-110. https://doi.org/10.1007/s00030-006-4045-5